Технология изготовления печатных форм. Способы изготовления печатных форм. Относительное удлинение, %


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Технологическая часть

1.1 Выбор способа печати

1.2 Выбор печатного оборудования для печати основных, дополнительных и вспомогательных элементов

1.5 Выбор формных пластин

Список литературы

Введение

Общие тенденции развития полиграфических технологий

Можно с уверенностью сказать, что полиграфическая промышленность является самой динамичной, бурно развивающейся отраслью в мире. При этом ее развитие происходит быстро, несмотря на колоссальные успехи еще более быстро развивающейся информационной отрасли и даже, возможно, вопреки ее развитию. Впрочем, полиграфия уже интегрировалась в нее, являясь важной частью информационной и коммуникационной отрасли. Она быстро, если не молниеносно, впитывает все новое, что создается человечеством, реализуя эти достижения в издательские и полиграфические технологии. Поэтому мы периодически узнаем о новом оборудовании, новых технологиях, новых программных решениях в области полиграфии и уже через короткое время видим их на полиграфических и издательских предприятиях в действии.

Еще два десятилетия назад полиграфисты не могли представить, какой в будущем станет их отрасль. С позиций 80-х годов скорость развития полиграфии в последнее время кажется поистине космической.

На наших глазах изменяются все сектора отрасли: то, что вчера было новинкой, сегодня уже устаревает и заменяется чем-то еще более новым и привлекательным. Поэтому говорить и писать о современных технологиях полиграфии, с одной стороны, просто, зная нынешнее состояние техники, а с другой стороны, сложно, потому что представляешь, что скоро сегодняшние новинки будут заменены или уже заменяются чем-то более новым.

Развитие науки и техники позволяет постоянно совершенствовать полиграфические технологии в соответствии с потребностями рынка, создающими благоприятные условия для глобализации и интернационализации полиграфии.

В полиграфическом процессе выделяют три этапа: допечатная подготовка, печатный процесс и послепечатная обработка. Это знает каждый. Но такого деления сейчас уже недостаточно. Использование компьютерной техники в полиграфии уже стало привычным. Постоянно появляются какие-нибудь новые компьютерные решения для полиграфии.

В этом обзоре мы не ставим своей целью рассказать абсолютно обо всех новых технологических процессах, оборудовании и материалах полиграфического производства, однако хотим отметить целый ряд новинок, в первую очередь привлекающих внимание специалистов отрасли.

Тенденции развития современных полиграфических технологий

Развитие современных полиграфических технологий свидетельствует отнюдь не о том, что полиграфия хиреет, слабеет и вообще «загибается». Скорее, наоборот. Но тем не менее следить за тенденциями развития рынка необходимо. программный печатный форма оборудование

Выше мы говорили о направленности современной полиграфии на целевые группы населения. Сегодня уже понятно, что развитие нашего информационного общества с учетом этой направленности в условиях глобализации и интернационализации рынков требует повышения качества изданий (это обеспечивается развитием техники), увеличения их красочности (черно-белые издания становятся никому не нужными), сокращения тиражей (целевые группы потребителей не безграничны) и сокращения сроков издания (пунктуальность и соблюдение оговоренных коротких сроков выполнения работ ценились всегда, а теперь в особенности).

Теперь полиграфия вышла на уровень системных решений, создания систем, охватывающих управление всем производственным процессом полиграфического производства. Следует отметить, что современные полиграфические технологии сейчас существуют не обособленно, а в тесной взаимосвязи, оказывают друг на друга существенное влияние. Среди этих систем важное место занимают системы управления цифровым оснащением, формированием и передачей информации, например через сеть Internet, названные Digital-Asset-Management. Они функционируют совместно с такими приложениями для планирования производственных процессов, как, например, независимый от производителя формат данных JDF (Job Definition Format), созданный по инициативе фирм Adobe, Agfa, Heidelberg и MAN Roland и позволяющий получить полную интеграцию и автоматизацию всех производственных процессов и их этапов, включая коммерческое отраслевое программное обеспечение. Это -- независимый от производителей и систем формат, предназначенный для работы в международном масштабе. Его цель -- объединить технически и организационно потоки данных Workflow и перекинуть мост между клиентами, типографиями и брошюровочно-переплетными предприятиями или подразделениями.

Что касается повышения красочности изданий, следует отметить, что значительно возросла роль существующих уже в течение нескольких лет систем формирования и управления воспроизведением цвета -- Color Management. В их новых версиях, или, лучше сказать, в новых решениях, основное внимание обращается не столько на оборудование, сколько на саму информацию о цвете.

Известные уже несколько лет системы сквозного управления производственными потоками полиграфического предприятия Workflow ориентируются на цифровую обработку информации. Сейчас некоторые фирмы уже создали несколько цифровых систем Workflow, использующих такие новые инструменты, как уже упоминавшийся выше формат данных JDF. Они предназначены для обработки цифровой информации на всех стадиях полиграфического производства и обеспечивают интеграцию с цифровым Workflow систем CtP (Computer to Plate), а также с системами цветопробы. В них входят процессы приема данных, производство, хранение в памяти, корректура как внутри предприятия, так и заказчиком, управление цветами, треппинг (регулирование перекрытия двух пограничных цветных поверхностей или устранение просветов между ними), цветоделение, спуск полос и их вывод. В цифровое Workflow входит также интерфейс с заказчиком, прием производственного заказа предприятием, общая проводка работы через все производственные этапы, сбор производственной информации, бухгалтерский учет, все расчеты и, наконец, архивирование информации.

Из компьютера на форму или все же на пленку?

В современном цифровом Workflow учитывается обстоятельство, уже понятое производителями оборудования для технологий CtP: для рядового предприятия быстрый переход от обычной копировальной технологии формного производства к технологии СtP затруднителен, а то и просто нереален, главным образом по экономическим причинам. Поэтому многие производители оборудования и систем ориентируются на выпуск систем вывода информации из цифровых массивов данных не на форму, а на фотопленку CtF (Computer to Film). В этом случае полиграфическое предприятие вынуждено будет оставить в своем производственном процессе ручной монтаж формных листов, но зато пока может обойтись без системы вывода целого печатного листа на формный материал. В будущем же, когда системы вывода на формный материал станут дешевле (а такая тенденция имеется), оно сможет безболезненно перейти на прямой вывод информации из цифровых массивов данных прямо на форму.

Офсетная печать

Наиболее распространенным сегодня способом печати является офсетный. Естественно, в области офсетной печати тоже происходит совершенствование печатного оборудования для листовой и рулонной печати, модернизация, а также создание нового печатного оборудования, активное внедрение новых печатных технологий. Рассмотрим некоторые новинки для этого способа печати, внедряемые в производство.

Офсетная печать без увлажнения

С давних пор было известно, что офсетная (плоская) печать основана на избирательном смачивании находящихся в одной плоскости печатающих и пробельных элементов. При этом пробельные элементы перед процессом печати должны быть увлажнены, иначе произойдет закатывание краски по всей поверхности печатной формы. И лишь в увлажненном состоянии пробельные элементы будут отталкивать краску от своей поверхности, обеспечивая ее накат только на печатающие элементы и, таким образом, печать.

Но после долгих поисков в начале 1982 года японская фирма Toray Industries создала технологию сухого (безводного) офсета, при котором не требуется увлажнение пробельных элементов и печатная машина может работать без увлажняющего аппарата. Для создания краскоотталкивающего слоя пробельных элементов печатной формы, согласно этой технологии, используется силикон-каучук. Япония стала первой страной, где эта технология впервые была опробована, затем она стала использоваться в Европе и в других регионах мира, вызвав большой интерес у полиграфистов.

Не будем подробно изучать достаточно тернистый путь офсета без увлажнения на полиграфические предприятия. Но отметим, что в настоящее время этот способ превратился в промышленную технологию, для которой создаются и модернизируются офсетные печатные машины, существуют специальные печатные краски и бумаги, а также проводятся многочисленные исследования и вырабатываются рекомендации по оптимальным технологиям. В Европе уже в течение более 5 лет работает Европейская ассоциация печати без увлажнения EWPA (European Waterless Printing Association), ежегодно проводящая свои собрания.

Офсет без увлажнения нашел свое промышленное применение как в рулонной, так и в листовой печати. Для него созданы различные печатные краски, в том числе с ультрафиолетовой сушкой. Такие краски имеют достаточно сложный состав по сравнению с обычными офсетными красками. Достаточно сказать, что в них входит до 8 компонентов. В их составе: пигмент, система связующего, реологическое вспомогательное вещество, минеральные масла или масла на основе растительного сырья, воск, сиккатив, антисиккатив, другие добавки.

Оказалось, что многие достоинства офсета без увлажнения перевесили его экономические недостатки и имеющиеся пока печатно-технические трудности.

Основной проблемой как в офсете без увлажнения, так и в обычном офсете является поддержание постоянной температуры красочного аппарата, поэтому печатные машины, с целью обеспечения высокого качества продукции, оснащаются устройствами для охлаждения красочного аппарата и цилиндра, насосами с компрессорами, обеспечивающими подачу тепла. В офсете без увлажнения особую роль играет необходимость снижения поверхностной температуры валиков, формного и офсетного цилиндров до 24°С при очень узких допусках, поэтому здесь необходима специальная техника поддержания температуры -- эта проблема стоит в центре внимания EWPA. В результате исследований и выработанных рекомендаций нидерландской фирмой VIS-Sensorcontrol созданы специальные бесконтактные инфракрасные сенсоры, выполняющие контроль в автоматическом режиме на каждом из красочных аппаратов многокрасочной машины и позволяющие регулировать температуру каждого красочного аппарата.

Таким образом, офсет без увлажнения успешно прокладывает себе путь на офсетные предприятия и, более того, уже успешно используется на целом ряде предприятий.

1. Технологическая часть

1.1 Выбор способа печати

Офсетная печать является наиболее широко применяемым методом печати. Около 40 % всех печатных изделий изготовлено офсетным методом. Офсет относится к непрямым печатным процессам. Это означает, что изображение переносится или перепечатывается офсетом с одной поверхности на другую. Печатная форма, установленная на печатном цилиндре, переносит изображение на резиновое полотно, закреплённое на офсетном валу. Затем изображение перепечатывается с офсетного вала на запечатываемую поверхность, когда последняя проходит между офсетным валом и печатным цилиндром. Изображение на печатной форме прямое, но при переносе на резиновое полотно оно становится зеркальным. Когда же изображение переносится на печатную поверхность, оно снова становится прямым.

На офсетной печатной форме области печатающих элементов и участки пробелов расположены в одной плоскости и работают по принципу взаимного отталкивания масла и воды. Участки пробелов на печатной форме притягивают смачивающее вещество (увлажняющий раствор) и отталкивают краску, изготовленную на масляной основе. Области печатающих элементов притягивают краску и отталкивают увлажняющий раствор.

Виды печатных машин

Офсетные печатные машины можно разделить на две группы:

машины с листовой подачей бумаги

машины с рулонной подачей.

Листовые печатные машины:

Офсетные машины с листовой подачей печатают изображение на отдельных листах бумаги, так как они запускаются в печатную машину по отдельности. Качество печати лучше и точность проводки листов выше, чем в машинах с рулонной подачей, но зачастую более экономично изготовлять крупные партии изделий на машинах с рулонной подачей в связи с тем, что у них выше эксплуатационная скорость.

Листовые печатные машины можно также разделить на три подгруппы: малоформатные, среднеформатные и крупноформатные печатные машины.

Малоформатные офсетные печатные машины с листовой подачей:

На малоформатных печатных машинах с листовой подачей возможно пропечатать листы с максимальным форматом 14x17 см. Они используются прежде всего при печати малых одно- или двуцветных тиражей для таких видов печатной продукции как типовые формы деловых документов, фирменные бланки и визитные карточки. Такие печатные машины популярны в типографиях, занимающихся оперативной печатью.

Среднеформатные офсетные печатные машины с листовой подачей:

На среднеформатной листовой печатной машине могут быть напечатаны листы с максимальным форматом 25x38 см. Цена на такие машины доходит до 20 000, и они являются типичным оборудованием в средних и крупных типографиях. На среднеформатных печатных машинах изготавливается такая продукция как брошюры, типовые формы деловых документов, средние тиражи изделий многокрасочной печати.

Крупноформатные офсетные печатные машины с листовой подачей:

Самые крупные тиражи (обычно 100000 единиц и более) и самые сложные печатные работы производятся на крупноформатных печатных машинах с листовой подачей. Они могут обрабатывать формат бумаги до 49x74 см и могут иметь несколько печатных секций, что позволяет пропечатывать многоцветные изображения за один прогон.

Рулонные печатные машины: Офсетные машины с рулонной подачей печатают изображение на непрерывной ленте бумаги, которая подаётся в печатную машину с помощью большого вала. Затем рулон бумаги разрезается на отдельные листы сразу после печати или, как в случае типовых форм деловых документов, его оставляют в форме рулона, затем перфорируют для упрощения дальнейшего разделения на отдельные листы. Как и листовые, рулонные печатные машины могут быть различных типов и размеров. Большинство малых рулонных машин могут печатать только на узких рулонах бумаги, могут использовать только один или два цвета и печатают только на лицевой стороне бумаги.

Агрегатные узлы печатных машин

Офсетные печатные машины (как с листовой, так и с рулонной подачей) состоят из определённых общих агрегатных узлов, которые, работая в совокупности, выполняют функцию офсетной печати. Наиболее типичные узлы включают устройство для подачи бумаги в печатную машину, ряд цилиндров, с помощью которых создаётся печатное изображение на бумаге, ролики для распределения краски и для увлажнения областей пробелов на печатной форме, систему вывода напечатанного изображения из печатной машины.

Подающая система: Подающая система - это устройство, с помощью которого бумага вводится в печатную машину. В листовых и рулонных печатных машинах применяются различные типы подающих систем.

Листовая подача: Бумага обычно укладывается стопой в лоток, находящийся на внешней панели печатной машины и оттуда подаётся в машину по одному листу. Каждый лист бумаги поднимается из стопы с помощью вакуумного устройства, которое называется «пневматический подающий присос». По мере того, как бумага загружается в печатную машину, лоток с бумагой автоматически приподнимается, благодаря этому процесс подачи бумаги происходит беспрерывно до момента опустошения лотка.

Рулонная подача: В подающей системе рулонных печатных машин используется механизм, который называется «клеть прокатного стана» и служит для работы с большими рулонами бумаги. В то время как бумага пропускается через печатную машину, другое устройство сохраняет достаточное натяжение бумаги по мере того, как рулон раскручивается в клети прокатного стана. Некоторые печатные машины снабжены автоматическим механизмом смены рулонов, который устанавливает следующий рулон, как только в предыдущем заканчивается бумага.

Печатная система: Печатная система офсетных печатных машин состоит из трёх основных агрегатов: формного цилиндра, офсетного вала и печатного цилиндра. Диаметр цилиндров определяет размер изделия, которое может быть напечатано на данной печатной машине. Названия печатным машинам часто даётся в зависимости от диаметра их цилиндров, например, «17-дюймовая печатная машина», «22-дюймовая печатная машина»

Формный цилиндр: Формный цилиндр оснащён пазом или «нерабочим участком», за который и крепится край формного полотна. Форма оборачивается вокруг цилиндра, а затем второй её край также крепится к пазу. Края формы оказываются сомкнутыми в пазе. В некоторых листовых печатных машинах используются формы с пробитыми отверстиями по краям. Нерабочий паз формного цилиндра в этом случае оснащён рядом фиксаторов, на которые надеваются пробитые края формного полотна. Фиксаторы затягиваются до такой степени, что формное полотно на цилиндре остаётся неподвижным.

Офсетный вал: Офсетный вал ничем не отличается от формного цилиндра за исключением того, что вместо формного полотна на нём закрепляется пористое резиновое полотнище. Такие полотна отличаются по типу и толщине в зависимости от типа печатной машины, в которой применяются.

Печатный цилиндр: печатный цилиндр, как правило, представляет собой бесшовный упрочнённый стальной вал, на нём крепится поверхность, на которую будет нанесено изображение. Бумага проходит между офсетным валом и печатным цилиндром, где только при определённой силе сжатия цилиндров изображение переносится на бумагу.

Красочный аппарат: Красочный аппарат офсетной печатной машины состоит из красочного резервуара, в котором содержится краска и целого ряда валиков, иначе называемого «раскатная группа», она распределяет краску и наносит её на печатную форму. Валик, находящийся внутри резервуара с краской, переносит краску из резервуара на раскатную группу, где она равномерно раскатывается. Затем она поступает на последние валики красочного аппарата, которые называются «накатные валики», которые, в свою очередь, наносят краску на печатную форму.

Увлажняющий аппарат: Увлажняющий аппарат состоит из ряда валиков, которые распределяют увлажняющий раствор по печатной форме. Увлажняющий раствор необходим для того, чтобы не дать краске попасть на участки формы без изображения. Как и красочный аппарат, увлажнительный аппарат состоит из резервуара с увлажняющим раствором, валика, находящегося внутри резервуара, который переносит раствор на увлажняющие валики, и формных валиков, которые наносят увлажняющий раствор на печатную форму.

Приёмно-выводное устройство: Листовые и рулонные печатные машины оснащены разными типами приёмно-выводящих устройств, которые описаны ниже:

Листовые печатные машины: напечатанные листы поступают с печатных секций печатной машины с листовой подачей в приёмный лоток или стол. Этот стол оснащён направляющими, которые позволяют вывести листы из машины на заданный участок стола. Сталкивающее устройство помогает сложить листы в ровную стопу. Лоток выводной системы автоматически опускается при наполнении запечатанными листами.

Рулонные печатные машины: запечатанный рулон выводится из печатных секций при помощи одного из двух существующих типов приёмно-выводящих устройств. Печатные машины типа «рулон-лист» оснащены механизмом для разрезания рулона на отдельные листы. Листы после окончания печати проходят небольшое расстояние по ленточному конвейеру до приёмного лотка, где они автоматически сталкиваются и могут быть перенесены на следующую стадию производственного процесса оператором печатной машины.

Другой тип рулонного приёмно-выводного устройства можно встретить на печатных машинах типа «рулон-рулон». Запечатанный рулон перемещается из печатных секций в перемоточную секцию, в которой он наматывается на катушку.

1.2 Выбор печатного оборудования для печати основных, дополнительных ивспомогательных элементов

Компания RYOBI была основана в 1943 году как производитель высококачественного литья для растущей японской промышленности и в дальнейшем расширила свой бизнес, начав разработку и производство офсетных печатных машин, инструментов и спортивного инвентаря. В настоящее время RYOBI - современная крупная международная компания, продажи которой в 2001 финансовом году составили 184 миллиарда йен или около полутора миллиардов долларов. Разветвленная структура RYOBI включает 15 дочерних компаний, в сочетании с сетью дилеров в 60 странах она обеспечивает продажи в 140 странах. Диверсификация компании обеспечивает ей финансовую стабильность в постоянно меняющихся условиях мировой рыночной экономики. Два крупнейших направления работы RYOBI - это высокоточное промышленное литье и печатные машины. В области высокоточного промышленного литья RYOBI прочно входит в число мировых лидеров. Инновационная интегрированная производственная система помогает оперативно обслуживать постоянно растущие запросы заказчиков из различных отраслей.

Причины успеха офсетных печатных машин RYOBI на мировом рынке: - Очень высокий уровень качества для печати самой сложной полиграфической продукции.

Для данной печатной продукции я выбрала оборудование: Ryobi 920

Эту модель изначально сконструировали для азиатского рынка, поскольку там очень высок спрос на печать упаковки в формате A1 (594.841 мм), однако интерес к новинке проявили и европейские дистрибьюторы а, также чтобы заработать успех на рынке Старого Света, это оборудование должно было работать с форматом SRA1 (640.900 мм).Листопроводящая система включает в себя печатные и передаточные цилиндры двойного диаметра, позволяющие работать как с тонкой бумагой, так и с плотным материалом толщиной до 0,6 мм.

Модели 920-й серии унаследовали от них несколько интересных конструкторских решений. Среди них система автоматической смывки офсетного полотна и красочных валов, а также полуавтоматическая система смены печатных форм. Также имеется механизм компенсации подачи краски и увлажнения в зависимости от скорости печати и устройство для удаления марашек.

1.3 Выбор технологического процесса изготовления печатных форм

Для изготовления печатных форм проектируемого издания была выбрана технология СtР, а именно устройства фирмы Коdаk TrendsetterII Quantum, которые оснащены устойчивой к сбою индивидуального лазера и использующей динамическую автофокусировку термической головкой, разработки Сгео, которая реализует уникальные возможности систем Quantum - температурную компенсацию, сверх-жесткую точку SquareSpot, стохастику Stассаtо 20 и взаимозаменяемость пластин, выведенных на различных устройствах, и все модели могут быть на месте дооснащены устройством автоматической выгрузки пластин в проявочную машину (СL), а также автозагрузчиком пластин (АL).

Технология COMPUTER то PRINT

CtP - Computer to Print. Как уже говорилось, словосочетание немного странное. Речь идет об электрографических машинах, которые, отличаясь от офсета по физическим принципам создания изображения, приближаются к нему по скорости печати и качеству изображения. Это машины Indigo (в настоящее время - HP Indigo), Xeikon и Xerox Docu Color. Машины этого типа производила и фирма Heidelberg, однако Heidelberg Nexpress - машина иного ценового класса, чем упомянутые, кроме того, совсем недавно это подразделение Heidelberg перешло к фирме Eastman Kodak. Первой в этом секторе была фирма Indigo, поэтому на при__мере этих машин мы и проиллюстрируем принципы печати Computer to Print.

1.4 Выбор оборудования для изготовления печатных форм

В современных допечатных процессах для изготовления офсетных печатных форм в основном используются три технологии: «компьютер -- фотоформа» (Computer-to-Film); «компьютер -- печатная форма» (Computer-to-Plate) и «компьютер -- печатная машина» (Computer-to-Press).

Процесс изготовления офсетных печатных форм с использованием технологии «компьютер -- фотоформа» (рис. 1) включает следующие операции:

пробивка отверстий для штифтовой приводки на фотоформе и формной пластине с помощью перфоратора;

форматная запись изображения на формную пластину путем экспонирования фотоформы на контактно копировальной установке;

обработка (проявление, промывка, нанесение защитного покрытия, сушка) экспонированных формных копий в процессоре или поточной линии для обработки офсетных формных пластин;

контроль качества и техническая корректура (при необходимости) печатных форм на столе или конвейере для просмотра форм и их корректировки;

дополнительная обработка (промывка, нанесение защитного слоя, сушка) форм в процессоре;

термообработка форм в печи для обжига (при необходимости повышения тиражестойкости).

Качество фотоформ должно отвечать требованиям технологического процесса изготовления печатных форм. Эти требования определяются способом печати, применяемой технологией и материалами. Например, комплект цветоделенных растровых диапозитивных фотоформ для офсетной листовой печати на многокрасочной машине (печать по сырому) на наиболее распространенной сегодня мелованной бумаге должен обладать следующими характеристиками:

отсутствие царапин, заломов, посторонних включений и других механических повреждений;

минимальная оптическая плотность (оптическая плотность основы пленки с учетом плотности вуали) - не более 0,1 D;

максимальная оптическая плотность для фотоформ, изготовленных лазерным экспонированием (с учетом плотности вуали), - не менее 3,6 D;

плотность ядра растровой точки не менее 2,5 D;

минимальная величина относительной площади растровых элементов - не более 3%;

наличие на фотоформе названий красок;

углы наклона растровой структуры соответствуют заданным величинам для каждой краски;

линиатура растровой структуры соответствует заданной;

несовмещение изображений на фотоформах одного комплекта по крестам - не выше 0,02% от длины диагонали. Это значение учитывает допуски на повторяемость при лазерном экспонировании и величину деформации пленки;

наличие на фотоформе контрольных меток и шкал.

Формы офсетной плоской печати на пробельных и печатающих элементах обладают различными физико химическими свойствами по отношению к печатной краске и увлажняющему средству. Пробельные элементы образуют гидрофильные поверхности, воспринимающие влагу, а печатающие элементы -- гидрофобные участки, воспринимающие печатную краску. Гидрофильные и гидрофобные участки создаются в процессе обработки формного материала.

Формы офсетной плоской печати могут быть разделены на две основные группы: монометаллические и полиметаллические -- в зависимости от того, что применяется для создания пробельных и печатающих элементов -- один металл (монометалл) или несколько (полиметалл). В настоящее время полиметаллические формы практически не используются. При всех современных способах изготовления монометаллических форм гидрофобные печатающие элементы создаются на пленках копировального слоя, прочно сцепленных с развитой поверхностью металла, а пробельные -- на адсорбционных гидрофильных пленках, образованных на поверхности металла основы.

Офсетные печатные формы изготавливают негативным или позитивным способом контактного копирования. При негативном способе на светочувствительный копировальный слой копируют негативы, и в этом случае задубленный копировальный слой служит основанием для печатающих элементов. При позитивном способе на светочувствительный слой копируют с диапозитива, и тогда экспонированные участки растворяются при обработке копии.

Для изготовления офсетных форм применяются централизованно выпускаемые предварительно очувствленные офсетные позитивные или негативные пластины.

Предварительно очувствленные позитивные формные пластины представляют собой многослойную структуру. Они производятся на основе особо чистого алюминиевого проката и являются результатом сложного и продолжительного процесса, гарантирующего высокое качество продукта. Эти пластины предназначены для изготовления высококачественных офсетных форм для листовых и рулонных машин способом позитивного копирования.

После электрохимической обработки, оксидирования и анодизации алюминиевая основа приобретает физико химические характеристики, обеспечивающие высокую разрешающую способность и тиражестойкость, стабильность гидрофильных свойств пробельных элементов на офсетной печатной форме, равномерное распределение красочного слоя и увлажняющего раствора по всей площади пластины.

После экспонирования обеспечивается хорошее представление цвета копировального слоя, позволяющее контролировать качество копирования до проявления. Печатающие элементы, образованные копировальным слоем, имеют хороший контраст по сравнению с пробельными участками, что позволяет использовать пластины для сканирования в системах автоматического контроля и управления офсетной печатью. В процессе печатания благодаря развитой капиллярной структуре анодированного слоя быстро устанавливается оптимальный баланс «краска -- вода», который стабильно поддерживается в процессе печатания тиража. Копировальный печатающий слой характеризуется высокой устойчивостью к действию спиртовых увлажняющих растворов и смывочных материалов. Оксидный слой упрочняет пробельные участки и увеличивает тиражестойкость печатных форм, защищая их поверхности от царапин и истирания. Высококачественная алюминиевая основа обеспечивает плотное облегание формного цилиндра и прочность формы на излом.

Микропигментирование (вакуумное покрытие) копировального слоя способствует плотному контакту с фотоформой при экспонировании и быстрому созданию вакуума.

Основные технические показатели позитивных (аналоговых) формных пластин имеют примерно следующие значения:

шероховатость -- 0,4 0,8 мкм;

толщина анодированного слоя -- 0,8 1,7 мкм;

толщина копировального слоя -- 1,9 2,3 мкм;

спектральная чувствительность -- 320 450 нм;

энергочувствительность -- 180 240 мДж/см2;

время экспонирования (при освещенности 10 000 лк) -- 2 3 мин;

минимальный размер воспроизводимых штрихов -- 6 8 мкм;

линиатура растрового изображения -- 60 лин/см (150 lpi);

градационная передача растровых элементов -- в светах 1 2%, в тенях 98 99%;

тиражестойкость -- до 150 тыс. оттисков без термообработки и до 1 млн оттисков с термообработкой;

цвет копировального слоя -- синий, зеленый, темно голубой;

толщина пластин -- 0,15; 0,2; 0,3; 0,4 мм.

Печатные формы должны иметь на передней кромке штифтовые отверстия разной конфигурации (круглые, овальные, прямоугольные). Штифтовые (приводочные) отверстия облегчают совмещение изображений, получаемых при печатании с готовых печатных форм.

Фотоформы и формные пластины перед копированием приводочными отверстиями надеваются на штифты специальной линейки, поставляемой вместе с перфоратором Для пробивки штифтовых отверстий в фотоформах и формных пластинах применяют специальные устройства -- перфораторы с ручным или педальным приводом. Пластину помещают в копировальную раму и размещают на ней монтаж фотоформ эмульсионным слоем к копировальному слою пластины. Совмещение пластины и монтажа осуществляется с помощью штифтов, расположенных на специальной линейке. Изображение на пластине должно быть читаемым.

За обрезным полем изображения устанавливаются шкалы контроля копировального процесса СПШ К, РШ Ф или контрольная шкала Ugra 82.

Для экспонирования необходимо обеспечить полный контакт между монтажом диапозитивов и поверхностью пластины, который достигается за счет двухступенчатого набора вакуума в контактно копировальной установке.

Режим экспонирования зависит от типа пластины, мощности осветителя (освещенность стекла копировальной рамы должна быть не менее 10 тыс. лк), расстояния от осветителя до стекла копировальной рамы, характера диапозитивов и определяется опытным путем.

Правильность выбора времени экспонирования оценивают по воспроизведению на копии сенситометрической шкалы после ее проявления на форме: для пробной печати должны быть полностью проявлены 3 4 поля шкалы СПШ К (оптическая плотность 0,45 0,6), для тиражной печати -- 4 5 полей (оптическая плотность 0,6 0,75).

С целью сокращения объема корректуры для устранения постороннего изображения (штрихов от краев пленки на монтаже, следов липкой ленты) проводят дополнительное экспонирование с рассеивающей (матированной) пленкой. Время экспонирования с рассеивающей пленкой обычно составляет 1/3 от основного времени экспонирования.

При этом следует иметь в виду, что использование рассеивающей пленки не влияет на воспроизведение мелких растровых точек и штриховых элементов, если они имеют высокую оптическую плотность и контраст. Для высокохудожественных изданий во избежание дефекта непрокопировки следует исключить применение рассеивающей пленки при экспонировании.

Для проявления экспонированную пластину устанавливают на стол загрузки процессора и подают ее на транспортирующие валики. Дальнейшее продвижение пластины происходит автоматически.

В зависимости от типа процессора проявление осуществляется струями раствора, подаваемого на копию из бака секции проявления, или путем погружения копии в кювету с проявляющим раствором с одновременным механическим воздействием ворсистого валика.

Офсетная копия проявляется в соответствии с возможностями процессора при температуре 21 25 °С в течение 20 35 с. Для каждого типа пластин их производители дают рекомендации по составу и расходу проявителя, которые необходимо соблюдать.

Для проявления вручную используются те же проявляющие растворы. Процесс осуществляется при температуре 21 27 °С. При небольшом количестве изображения на форме время проявления составляет 45 60 с. При среднем и большом количестве печатающих элементов рекомендуется сначала проявить пластину в течение 30 40 с, проконтролировать и в случае необходимости продолжить проявление еще 30 40 с. Проявление копии рекомендуется проводить с помощью мягкого тампона. При этом недопустимо попадание абразивных частиц осадка и неразбавленного концентрата проявителя на поверхность пластины.

Скорость движения офсетной копии зависит от типа процессора, времени работы проявителя и его температуры.

Промывка осуществляется струйным способом автоматически в секции промывки. Избыток воды на форме отжимается валиками на выходе из секции.

Нанесение защитного покрытия (гуммирование) на форму осуществляется валковым способом автоматически с последующим отжимом на выходе из секции. Валики для нанесения защитного покрытия необходимо тщательно промывать водой перед началом работы.

Сушка осуществляется обдувом формы с помощью вентиляторов воздухом, подогретым до 40 60 °С при прохождении через секцию сушки. Для контроля качества готовую форму переносят на стол для корректуры и тщательно просматривают. Пробельные элементы формы должны быть полностью проявлены. Все дефекты пробельных элементов: следы от приклеивающего материала, тень от краев диапозитива, излишние метки и кресты и т.п. -- удаляют с помощью корректирующего карандаша «минус» или тонкой кисти, смоченной гелем для корректуры. Корректуру проводят по защитному покрытию. В корректирующем составе копировальный слой полностью растворяется, поэтому наносить его следует очень аккуратно, не затрагивая изображения. Время действия корректуры до визуального растворения слоя -- 5 10 с.

Откорректированную форму подвергают дополнительной обработке, для чего ее вводят в секцию промывки процессора, затем снова наносят защитное покрытие и производят сушку.

Термообработку проводят в специальных установках -- печах для обжига, состоящих из стола загрузки, термошкафа и стола выгрузки. Формы, предназначенные для термообработки, обязательно покрывают слоем коллоида с целью защиты пробельных элементов от обезвоживания, а печатающих элементов -- от растрескивания.

Защитное покрытие наносят на чистые формы, предварительно удалив с них гуммирующий слой, -- вручную на столе или в процессоре. В последнем случае коллоид заливают в секцию нанесения защитного покрытия. Форму устанавливают на стол загрузки и подают на транспортирующие ролики. Дальнейшее продвижение осуществляется автоматически.

Температуру и время термообработки задают на пульте установки режимов: температура 180 240 °С, время 3 5 мин. После термообработки проводят визуальный контроль формы: изображение становится темным, насыщенным и имеет одинаковый цвет по всему формату. Слой коллоида может служить защитным покрытием при хранении форм не более суток. Для длительного хранения форм его удаляют с поверхности теплой водой с помощью губки и наносят обычное защитное покрытие.

Для изготовления офсетных печатных форм по технологии «компьютер -- печатная форма» используются светочувствительные (фотополимерные и серебросодержащие) и термочувствительные формные пластины (цифровые), в том числе не нуждающиеся в химической обработке после экспонирования.

Пластины на основе фотополимерного слоя чувствительны к излучению видимой части спектра. В настоящее время распространены пластины для зеленого (532 нм) и фиолетового (410 нм) лазеров. Структура пластин такова (рис. 6): на стандартную анодированную и зерненую алюминиевую основу нанесен слой мономера, защищенный от окисления и полимеризации специальной пленкой, которая при дальнейшей обработке растворяется водой. Под воздействием света заданной длины волны в слое мономера образуются центры полимеризации, затем пластина подвергается прогреву, в ходе которого процесс полимеризации ускоряется. Полученное скрытое изображение протравливается проявителем, при этом вымывается неполимеризованный мономер, а полимеризованные печатающие элементы остаются на пластине. Фотополимерные офсетные пластины предназначены для экспонирования в формовыводных устройствах с лазером видимого света -- зеленым или фиолетовым. Благодаря высокой скорости экспонирования и простоте обработки эти пластины широко применяются и обеспечивают возможность получения 2 98% ной растровой точки при линиатуре до 200 lpi.

Если их не подвергать дополнительной термообработке, пластины выдерживают до 150 300 тыс. оттисков. После обжига -- более миллиона оттисков. Пластины на основе серебросодержащей эмульсии также чувствительны к излучению видимой части спектра. Существуют пластины для красного (650 нм), зеленого (532 нм) и фиолетового (410 нм) лазеров. Принцип образования печатающих элементов сходен с фотографическим -- разница заключается в том, что на фотографии кристаллы серебра, на которые попал свет, остаются в эмульсии, а остальное серебро вымывается фиксажем, тогда как на пластинах серебро с незасвеченных участков переходит на алюминиевую подложку и становится печатающими элементами, а эмульсия вместе с оставшимся в ней серебром полностью смывается.

В последние годы всё более широкое применение находят пластины, светочувствительные к фиолетовой области спектра излучения (400 430 нм). В связи с этим многие формовыводные устройства оснащаются фиолетовым лазером. В процессе экспонирования этих пластин луч фиолетового лазера активирует серебросодержащие частицы на пробельных элементах. Незасвеченные участки после обработки проявителем формируют печатающие элементы.

В процессе проявления серебросодержащие частицы активируются, при этом у них возникают устойчивые связи с желатиной. Частицы, которые не были засвечены, остаются подвижными и способными к диффузии.

На следующей стадии не подвергшиеся засветке ионы серебра диффундируют из эмульсионного слоя через барьерный слой на поверхность алюминиевой основы, формируя на нем печатающие элементы. После того как изображение полностью сформировано, желатиновая фракция эмульсии и растворимый в воде барьерный слой полностью удаляются во время смывки, оставляя на алюминиевой основе только печатающие элементы в виде осажденного серебра.

Эти пластины обеспечивают получение 2 98% ной точки при 250 lpi, их тиражестойкость составляет 200 350 тыс. оттисков, а светочувствительность максимальна. Энергочувствительность пластин находится в интервале от 1,4 до 3 мкДж/см.

Благодаря высокой чувствительности для экспонирования пластины требуется меньше времени и энергии. Это, в свою очередь, приводит как к повышению производительности формовыводного устройства, так и к снижению потребляемой лазером мощности и к продлению срока его службы. В результате использования тонкого серебряного слоя, который более чем на порядок тоньше полимерного, уменьшается растискивание краски, что ведет к повышению качества оттиска. Все операции с пластинами необходимо проводить при желтом свете. Пластины на основе серебросодержащей эмульсии не рекомендуется применять для печатания УФ красками, а также подвергать обжигу.

Термочувствительные пластины имеют следующую структуру: на алюминиевую основу нанесен слой полимерного материала (термополимер). Под воздействием ИК излучения покрытие разрушается либо меняет свои физико химические свойства, в результате при последующей химической обработке образуются пробельные (в случае позитивного материала) или печатающие (при негативном процессе) элементы. Для экспонирования таких пластин используют лазер с длиной волны излучения 830 или 1064 нм.

Разрешающая способность термочувствительных пластин может обеспечить запись изображения с линиатурой до 330 lpi, что соответствует получению однопроцентной точки размером 4,8 мкм. При этом тиражестойкость полученных печатных форм достигает 250 тыс. оттисков без обжига и 1 млн оттисков с обжигом. Процесс обработки этих пластин после экспонирования состоит из трех ступеней:

предварительный обжиг-- поверхность формы подвергается обжигу примерно в течение 30 с при температуре 130 145 °С. Этот процесс укрепляет печатающие (чтобы они не смогли раствориться в проявителе) и размягчает пробельные элементы. Предварительный обжиг является обязательной операцией;

проявление-- стандартный позитивный проявочный процесс: погружение в раствор, обработка щетками, промывка, гуммирование и форсированная воздушная сушка;

обжиг-- после обработки пластина подвергается обжигу в течение 2,5 мин при температуре от 200 до 220 С, чтобы обеспечить ее прочность и большую тиражестойкость.

В настоящее время на российском рынке представлен широкий ассортимент термочувствительных пластин, в том числе и пластин нового поколения, которые не требуют предварительного нагрева для обработки. Эти пластины в большинстве своем обеспечивают получение 1 99% ной точки при линиатуре растра 200 lpi, тиражестойкость 150 тыс. оттисков без обжига, а светочувствительность у них различается, находясь в интервале от 110 до 200 мДж/см2.

Термоабляционные пластины являются многослойными, а пробельные элементы в них формируются на поверхности специального гидрофильного или олеофобного слоя. В процессе экспонирования происходит избирательное термическое удаление ИК излучением (830 нм) специального слоя. Существуют позитивные и негативные версии термоабляционных пластин. В негативных пластинах олеофобный слой находится выше олеофильного печатающего слоя, и в процессе экспонирования происходит его абляция с будущих печатающих элементов формы. В позитивных пластинах все наоборот: выше находится олеофильный печатающий слой, удаляемый в процессе экспонирования с будущих пробельных элементов формы. Продукты горения удаляются системой вытяжки, которой должно быть оснащено формовыводное устройство, а после экспонирования пластина промывается водой.

Основой термоабляционных формных материалов служат алюминиевые пластины или полиэфирные пленки.

К недостаткам беспроцессных пластин можно отнести более высокую цену и низкую тиражестойкость (около 100 тыс. оттисков).

В оперативной полиграфии при производстве малотиражной продукции, не требующей высокого качества (инструкции, бланки и т. п.), находят применение офсетные печатные формы на бумажной и полимерной основе.

Офсетные печатные формы на бумажной основе выдерживают тиражи до 5 тыс. экземпляров, однако из за пластической деформации увлажненной бумажной основы в зоне контакта формного и офсетного цилиндров штриховые элементы и растровые точки сюжета искажаются, поэтому бумажные формы могут быть использованы только для однокрасочной печати.

Технология изготовления бумажных офсетных форм основана на принципах электрофотографии, заключающихся в применении фотополупроводящей поверхности для образования скрытого электростатического изображения, которое впоследствии проявляется.

В качестве формного материала используется специальная бумажная подложка с нанесенным на нее фотопроводниковым покрытием (оксид цинка). Формный материал в зависимости от типа обрабатывающего устройства может быть листовой и рулонный.

Достоинствами этой технологии являются оперативность изготовления печатной формы (менее минуты), простота использования и низкая расходная стоимость. Такие печатные формы могут быть получены путем прямой записи текстовой и изобразительной информации в обычном лазерном электрофотографическом принтере. При этом никакой дополнительной обработки форм не требуется.

Формы на полимерной основе, например полиэстровой, имеют максимальную тиражестойкость до 20 тыс. оттисков хорошего качества с линиатурой до 175 lpi и градационным диапазоном 3 97%.

Основой технологии является полиэстровый рулонный светочувствительный материал, работающий по принципу внутреннего диффузионного переноса серебра. В процессе экспонирования происходит засветка галогенида серебра. При химической обработке осуществляется диффузионный перенос серебра из незасвеченных областей в верхний слой, восприимчивый к краске. Этот технологический процесс требует негативного экспонирования. Экспонирование полиэстровых материалов может осуществляться на некоторых типах фотовыводных устройств.

Процесс получения офсетных печатных форм по технологии «компьютер -- печатная машина» включает следующие операции:

передача цифрового файла, содержащего данные о цветоделенных изображениях полноформатного печатного листа, в растровый процессор изображения (РИП);

обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с заданной линиатурой и типом растра);

поэлементная запись на формном материале, размещенном на формном цилиндре цифровой печатной машины, изображения полноформатного печатного листа;

печатание тиражных оттисков.

Одной из таких технологий, реализованных в цифровых печатных машинах офсетной печати без увлажнения, является обработка тонкого покрытия. В этих машинах используется рулонный формный материал, на полиэстровую основу которого нанесены теплопоглощающий и силиконовый слои. Поверхность силиконового слоя отталкивает краску и образует пробельные элементы, а удаленный лазерным излучением термопоглощающий слой -- печатающие элементы.

Другой технологией получения форм офсетной печати непосредственно в цифровой печатной машине является передача на поверхность формы термополимерного материала, находящегося на передающей ленте, под действием инфракрасного лазерного излучения.

Изготовление офсетных печатных форм непосредственно на формном цилиндре печатной машины сокращает продолжительность формного процесса и повышает качество печатных форм за счет уменьшения числа технологических операций.

1.5 Выбор формных пластин

Основные характеристики пластин для CtP

Формные пластины для CtP должны обладать высокой чувствительностью к излучению экспонирующего лазера, обеспечивать требуемое разрешение записи и иметь требуемую тиражестойкость. Соответственно их основные характерис тики таковы:

* диапазон максимальной спектральной чувствительности регистрирующегослоя;

* требуемая величина энергии экспонирования;

* разрешение;

* тиражестойкость.

Диапазон максимальной спектральной чувствительности регистрирующего слоя формной пластины должен быть согласован с длиной волны излучения лазера экспонирующей установки.

Чувствительность регистрирующего слоя пластины к излучению лазера определяет требуемую величину энергии экспонирования: чем меньше последняя, тем больше может быть скорость записи.

Разрешение пластины обусловливает минимальный размер печатающего элемента на форме, а значит, качество воспроизведения мелких деталей изображения. В спецификациях пластин обычно указывается диапазон градационной передачи (относительные размеры минимального и максимального воспроизводимых растровых элементов) при определенной линиатуре записи.

Тиражестойкость характеризует экономическую эффективность использования формы для печати тиража и зависит от прочности печатающих и пробельных элементов, а также от прочности их соединения друг с другом (обычно речь идет о прочности соединения печатающих элементов и алюминиевой основы, открытые участки которой выполняют роль пробельных элементов). Тиражестойкость печатных форм на основе пластин с полимерным регистрирующим слоем (например, фотополимерных) иногда может быть повышена в 3-4 раза путем термообработки (обжига) формы после проявки.

Структура пластин для CtP

Современные формные пластины, как правило, состоят из основы, формирующего печатающие элементы регистрирующего слоя, а также из одного или нескольких дополнительных слоев. Механической основой большинства формных пластин служит лист алюминия толщиной в несколько десятых долей миллиметра. Поверхность алюминиевой основы обычно подвергается зернению и анодированию, что увеличивает износостойкость формы, повышает прочность соединения основы с печатающими элементами, а также ее адсорбционную способность, что очень важно для пластин, предназначенных для офсетной печати с увлажнением, так как воспринимающие увлажняющий раствор пробельные элементы формы в этом случае обычно образуются именно поверхностью алюминиевой основы.

Регистрирующий слой служит для формирования печатающих элементов формы. Физико-химические процессы, происходящие в регистрирующих слоях во время их экспонирования и проявки, различны для пластин разных типов. Дополнительные слои могут участвовать в процессе формирования на пластине изображения (например, преобразовывать энергию излучения лазера или выполнять роль маски), служить для разделения слоев, для защиты пластины от механических повреждений или от воздействия химических веществ, а также для формирования пробельных элементов (например, силиконовый слой в пластинах для печати без увлажнения).

Классификация пластин для CtP

Современные пластины для CtP классифицируются по следующим признакам:

...

Подобные документы

    Технология изготовления офсетных печатных форм. Технология Computer-to-Plate. Формные пластины для данной технологии. Основные способы изготовления печатных форм. Сущность косвенного и комбинированного способов изготовления трафаретных печатных форм.

    курсовая работа , добавлен 24.01.2015

    Характеристика выбранного образца и общая технологическая схема его изготовления. Общие сведения о трафаретной печати. Ротационные печатные формы. Требования к оригиналам и фотоформам. Выбор технологии, материалов и оборудования для изготовления образца.

    курсовая работа , добавлен 08.01.2012

    Оценка полиграфии исполнения издания по группе формных процессов. Схема допечатных процессов технологии воспроизведения издания-образца. Сравнительный анализ формных материалов и технологий изготовления печатных форм для запечатывания издания-образца.

    курсовая работа , добавлен 26.02.2012

    Основные виды календарей (квартальные, настольные, настенные), материалы для их изготовления. Рекомендуемый формат изготовления календарей. Косвенные способы плоской печати. Процесс изготовления печатных форм. Характеристика оборудования для печати.

    курсовая работа , добавлен 04.06.2014

    Технические характеристики и показатели оформления издания. Основные понятия о плоской офсетной печати. Разновидности ее форм. Классификация формных пластин для технологии Computer-to-Plate. Выбор оборудования и контрольно-измерительной аппаратуры.

    курсовая работа , добавлен 21.11.2014

    Анализ технических характеристик и эксплуатационных характеристик изделия (упаковки для косметической продукции). Проектирование комплексного технологического процесса изготовления печатных форм трафаретной печати. Изготовление печатных форм для упаковки.

    курсовая работа , добавлен 02.04.2014

    Анализ и разработка количественных и качественных показателей полиграфического продукта, обоснование выбора способа печати. Изготовление печатных форм и карта технологического процесса офсетной печати. Расчёт оборудования, кадров, материальных потоков.

    дипломная работа , добавлен 23.12.2012

    Внедрение технологии Computer-to-Plate. Образование печатных элементов на формных пластинах с помощью засветки пластин лазерным лучом и химической обработки. Формовыводные устройства для лазерной записи офсетных печатных форм, их характеристики.

    реферат , добавлен 21.01.2010

    Основные технологические характеристики издания. Расчет объема издания в физических печатных и условных печатных листах, объема бумаги, необходимого для печати тиража издания. Выбор оптимального и более экономичного варианта для печати тиража издания.

    реферат , добавлен 13.11.2014

    Технические характеристики исследуемого издания. Обоснование выбора способа печати и печатного оборудования. Сравнительный анализ выбранных видов печатных машин. Выбор запечатываемого материала (бумаги), краски. Пооперационная карта печатных процессов.

Флексографские печатные формы - описание процесса изготовления..

Для того, чтобы получить требуемую печатную продукцию, необходимо изготовить или купить печатную
форму, которая будет наносить краску на запечатываемый материал.

Чтобы изготовить печатную форму, необходима фотополимеризуемая (формная) пластина, при
воздействии на которую и ее последующей обработке получается нужная печатная форма, пригодная
для печатания тиража. Таким образом, формная пластина - это регистрирующий материал,
используемый для изготовления формы для флексопечати.

Возможны следующие технологии изготовления флексографских форм:

  • Аналоговая - исходная информация для записи на формную пластину представлена в
    вещественном виде;
  • Цифровая - исходная информация для записи на формную пластину представлена в цифровом
    виде.

Аналоговая технология заключается в следующем: необходимо привести в контакт формную пластину и
фотоформу - негатив, который содержит в себе информацию для записи на формную пластину. После
этого проходят следующие стадии:

  • Экспонирование (засвечивание) оборотной стороны формной пластины. Засвеченные молекулы
    полимера образуют сетчатую структуру и становятся нерастворимыми. Данная стадия служит для
    формирования основания печатной формы, которое определяет глубину пробельных элементов.
    Стадия проводится под действием УФ-А излучения.
  • Основное экспонирование (засвечивание) - служит для формирования правильного профиля
    печатающего элемента. Данная стадия должна проходить в вакууме, благодаря чему достигается
    необходимое качество формы для флексопечати и, как следствие, печатной продукции. Здесь
    происходит процесс полимеризации (закрепления) фотополимеризуемого слоя. Эта стадия также
    проводится под действием УФ-А излучения.
  • Вымывание - служит для удаления участков полимера, не затвердевшего при экспонировании.
  • Сушка - служит для удаления растворителя, который впитался в формную пластину, чтобы
    устранить набухание печатающих элементов, стабилизировать печатные свойства и повысить
    тиражестойкость печатной формы.
  • Финишинг - эта стадия служит для устранения липкости, которая возникает из-за наличия на
    поверхности формы тонкого слоя высоковязкой жидкости. Осуществляется под действием УФ-С
    излучения.
  • Дополнительное экспонирование - служит для увеличения прочности печатающих элементов.
    Осуществляется под действием УФ-А излучения.

По типу вымывного раствора формные пластины можно разделить на:

  • Водовымывные.
  • Сольвентные.

Для водовымывных пластин используется обыкновенная водопроводная вода. После осуществления
процесса вымывания получившийся раствор можно сливать в канализацию, так как в нем нет твердых
остатков, хлорпроизводных и иных вредных органических веществ и все его составные части могут
биологически разлагаться.

Для спиртовымывных пластин используется смесь спирта и воды. После осуществления процесса
вымывания получившийся раствор необходимо собирать в емкость и очищать в регенерационных
установках, либо утилизировать как специальные отходы. К тому же процесс изготовления форм при
помощи спирта не является экологически чистым: образующиеся пары оказывают вредное влияние на
здоровье человека.

Однако при использовании спиртовымывных пластин можно получить лучшие градационные
характеристики оттисков, например, проработку сложных цветовых оттенков, и тиражестойкость данных
форм будет выше, чем водовымывных. Если к печатной продукции не предъявляются особые
требования по градационным характеристикам, то лучше использовать водовымывные формные
пластины.

Для улучшения качества оттисков флексографиских форм в аналоговой технологии необходимо устранить некоторые трудности:

  • Неплотный прижим фотоформы к формной пластине при экспонировании.
  • Получение низкой оптической плотности непрозрачных участков фотоформы и, как следствие,
    низкую оптическую плотность на оттиске.
  • Возможность искажений из-за попадания пыли при экспонировании с фотоформы на формную
    пластину.

Устранение этих трудностей - достаточно сложная задача.

Аналоговая технология получила своего последователя в виде технологии Kodak Flexcel NX, которая
позволяет получить стабильную жесткую точку с плоским верхом. Суть технологии заключается в
использовании вместо фотоформы термочувствительной многослойной пленки, разработанной
компанией Kodak - Kodak Flexcel NX 830 Thermal Imaging Layer - TIL, на которой записывается
негативное изображение. После записи изображения пленку прикатывают к обычной аналоговой форме
с помощью ламинатора. Далее следует обычная последовательность стадий, которые свойственны
аналоговому процессу.

Цифровые технологии изготовления печатных форм (форм для флексопечати) осуществляются:

  • Прямым лазерным гравированием.
  • По цифровой масочной технологии.

Прямое лазерное гравирование предполагает использование лазера, чаще всего - на углекислом газе,
который удаляет приемный слой на участках воздействия излучения. При его использовании с
применением различных способов модуляции излучения обеспечивается получение лазерного пятна
диаметром, не превышающим 20 мкм. В качестве формного материала для прямого гравирования
применяется либо предварительно фотополимеризуемая (формная) пластина, либо эластомеры (резина
и ее производные), либо полимеры.

Данный способ получения формы для флексопечати имеет следующие
недостатки:

  • Из-за влияния теплопроводности при высоких мощностях лазера в экспонируемом материале
    неизбежно возникает эффект смазывания, что приводит к появлению зернистой структуры.
  • В момент включения и выключения лазера возникает так называемый «эффект памяти», который
    приводит к отклонениям в работе лазера и, как результат, к кратковременной неправильной
    передаче тонов изображения. Производительность данной технологии при записи
    высоколиниатурных изображений не превышает 0,06 м²/ч (что соответствует одной странице
    формата А4 в час). Поэтому высокомощные лазеры применяются только для записи штриховых
    изображений или изображений с низкой линиатурой, не превышающей 48 лин/см.
  • Образование большого количества пыли, что, несмотря на наличие необходимых мощных
    отсасывающих и фильтрующих устройств, часто приводит к загрязнению оборудования и
    производственных помещений.

Однако большим преимуществом технологии прямого гравирования является получение готовой
печатной формы сразу после завершения процесса гравирования. Это одноступенчатый процесс, не
требующий дополнительной обработки материала, связанной с временными и денежными затратами.

Цифровая масочная технология заключается в том, что запись изображения осуществляется с
помощью лазера на масочном слое формной пластины и создается маска. Масочный слой представляет
собой слой формной пластины толщиной 8-10 мкм. Это сажевый наполнитель в растворе олигомера,
который обладает чувствительностью к ИК-излучению (больше 830нм), т.е. это термочувствительный
слой. Благодаря поглощению ИК-излучения масочным слоем происходит изменение его агрегатного
состояния на поверхности формной пластины и формируется негативное изображение - маска (аналог
фотоформы). Изображение, полученное на маске, при основном экспонировании в дальнейшем
переносится на формную пластину. Дальнейшие стадии изготовления форм не отличаются от
изготовления печатных форм по аналоговой технологии.

В цифровой масочной технологии есть ряд преимуществ по сравнению с
аналоговой и технологией прямого лазерного гравирования

  • В классической цифровой технологии основное экспонирование происходит без вакуумирования и
    осуществляется на воздухе, в отличие от аналоговой технологии;
  • отсутствие проблем из-за неплотного прижима фотоформы к формной пластине при
    экспонировании, как в аналоговой технологии.
  • Отсутствие искажений из-за низкой оптической плотности непрозрачных участков фотоформы, и как
    следствие, темных участков оттисков.
  • Отсутствие искажений из-за возможности попадания пыли при экспонировании с фотоформы на
    формную пластину.

Цифровая масочная технология позволяет добиться следующих результатов:

  • Воспроизводить на печатной форме растровые точки меньших по размеру от 1% до 99%.
  • Получить изображение с линиатурой растрирования до 180 lpi.

У цифровой масочной технологии имеются следующие последователи:

  • Технология LUX от MacDermid - заключается в нанесении специальной пленки LUX на
    поверхность формной пластины, которая препятствует процессу кислородного ингибирования, тем
    самым позволяя получить на формной пластине точку с плоской вершиной. После чего проводятся
    следующие действия: основное экспонирование, снятие мембраны, после этого стадии создания
    формы не отличается от классической.
  • Технология Next от FlintGroupe - заключается в использовании более мощного источника УФ-
    излучения, встроенного в экспонирующее устройство. Мощный световой поток ускоряет процесс
    полимеризации, тем самым уменьшая кислородное ингибирование, благодаря чему печатные
    элементы приобретают плоскую вершину.
  • Технология DigiFlow от DuPont - заключается в том, что стадия основного экспонирования
    производится в среде инертного газа - азота. Таким образом, создается контролируемая
    атмосфера, что позволяет воспроизводить на формной пластине элементы изображения 1:1 и
    получать точки с плоской вершиной.
  • Технология FAST от DuPont - заключается в том, что термально размягченные
    незаполимеризованные элементы формной пластины переходят в вязко-текучее состояние и
    переносятся на нетканый материал - «полотенце». Таким образом, не требуется операция сушки.
    Технологическая цепочка сокращается до 5 этапов - экспонирование оборотной стороны,
    основное экспонирование, удаление незаполимеризованного слоя, финишинг, дополнительное
    экспонирование.
  • Технология Сyrel round от DuPont - заключается в том, что для печати используются не плоские
    пластины, а гильзовые Cyrel round или Cyrel FAST round. Формы на гильзах монтируются до
    вымывания, что обеспечивает одинаковую высоту растровых и штриховых элементов. Данная
    технология обеспечивает возможность безразрывной печати.

Рис. 3.1. Принципиальная схема изготовления монометаллической и полиметаллической печатных форм плоской печати: 1 - формная основа (металлическая пластина толщиной 0,3-0,5 мм); 1" - слой меди (гальванопокрытие, 6-20 мкм); 1"" - слой хрома (гальванопокрытие, 0,8-1,2 мкм); 2 - копировальный слой (2-3 мкм). Пробельный элемент - гидрофильная пленка (1-2 мкм); печатающий элемент - гидрофобная пленка (2-3 мкм) Рис. 3.2. Капля жидкости на поверхности твердого тела

Плоская офсетная печать - наиболее перспективный и быстро прогрессирующий способ печати; она постепенно теснит высокую и другие виды печати.

Формы офсетной плоской печати отличаются от форм высокой и глубокой печати по двум основным признакам:

  1. по отсутствию геометрической разницы в высоте между печатающими и пробельными элементами
  2. и
  3. по наличию принципиального различия физико-химических свойств поверхности печатающих и пробельных элементов.
Печатающие элементы формы плоской печати обладают ярко выраженными гидрофобными свойствами и водой не смачиваются. Пробельные элементы, наоборот, хорошо смачиваются водой и способны удерживать на своей поверхности некоторое ее количество, они обладают ярко выраженными гидрофильными свойствами.

В процессе плоской печати проводится последовательное смачивание формы водным раствором и краской. При этом вода удерживается на пробельных элементах формы вследствие их гидрофильности, образуя на их поверхности тонкую пленку. Краска удерживается только на печатающих элементах формы, которые она хорошо смачивает. Поэтому принято говорить, что процесс офсетной плоской печати основан на избирательном смачивании пробельных и печатающих элементов водой и краской.

Для получения форм плоской печати необходимо создать на поверхности формного материала (формной основы) устойчивых гидрофобных печатающих и гидрофильных пробельных элементов. Это может быть достигнуто разными способами, но повсеместное широкое применение в полиграфии получили монометаллические и биметаллические печатные формы. Наиболее употребительные формные основы для получения как моно-, так и биметаллических печатных форм - это пластины из алюминия (или его сплава) или из углеродистой или нержавеющей стали. Поверхность алюминиевой или стальной пластины при получении монометаллических форм остается без изменения, а при получении биметаллических форм на нее наращивают слой меди (на нем в дальнейшем образуются печатающие элементы), а поверх него - слой хрома или никеля (для образования пробельных элементов).

В обоих случаях (при получении как моно-, так и биметаллических форм) на формную пластину наносят копировальный- слой - негативный (например, хромированный ПВС или диазосмола) или позитивный (производные ортонафтохинондиазидов), в зависимости от способа копирования. На копировальный слой контактным способом копируют растровую или штриховую фотоформу: негатив или диапозитив. После проявления копии последующая ее обработка зависит от характера формной основы - моно- или полиметаллическая.

На рис. 3.1 приведена схема получения монометаллической и полиметаллической форм позитивным копированием.

Получение монометаллической формы очень просто (рис. 3.1 ). Для проявления копии, т. е. для растворения позитивного копировального слоя, служит проявляющий раствор, который не только растворяет облученные участки слоя, но одновременно гидрофилизует обнажающий металл. Состав такого раствора несложен, он содержит метасиликат натрия выделение">рис. 3.1 ) протекает более сложно. Негативный копировальный слой теряет растворимость на облученных участках формы. При проявлении водой обнажается поверхность хрома на участках, соответствующих темным участкам фотоформы. После проявления проводят стравливание хрома (электрохимически в растворе серной кислоты или химически в растворе соляной кислоты). Понятно, что хром стравливается только там, где он незащищен оставшейся пленкой копировального слоя. В результате стравливания хрома обнажается поверхность меди на участках, соответствующих темным местам фотоформы. После этого удаляют оставшуюся пленку копировального слоя и проводят гидрофилизацию - гидрофобизацию формы. Для этого форму обрабатывают раствором, содержащим одновременно и гидрофилизующие компоненты (КМЦ и аммоний щавелевокислый) и гидрофобизующий компонент - бутилксантогенат калия. КМЦ адсорбируется на оксалате хрома, создавая пробельные элементы, а бутилксантогенат - на меди, образуя печатающие элементы.

Чтобы понять механизм избирательного смачивания печатающих и пробельных элементов форм плоской печати, надо обратиться к основным физико-химическим закономерностям процессов смачивания твердых поверхностей жидкостями.

Как известно, капля жидкости, нанесенная на твердую поверхность,

смачивает или не смачивает эту поверхность в зависимости от соотношения трех сил поверхностного натяжения:

формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.1(3.1)

Разность двух поверхностных натяжений формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.2.gif" border="0" align="absmiddle" alt="(3.2)

Смачивание или несмачивание твердой поверхнэсти жидкостью определяется соотношением сил притяжения жидкости к твердому телу (силы адгезии) и сил взаимного притяжения между молекулами самой жидкости (силы когезии). В связи с этим взаимодействие жидкости и твердого тела удобно характеризовать работой адгезии формула" src="http://hi-edu.ru/e-books/xbook412/files/85.gif" border="0" align="absmiddle" alt=".3.3.gif" border="0" align="absmiddle" alt="(3.3)

Очевидно, чем сильнее взаимодействие жидкости и твердого тела, тем больше работа адгезии, тем сильнее (при прочих равных условиях) смачивание. Из сопоставления уравнений (3.2) и (3.3) получаем

формула" src="http://hi-edu.ru/e-books/xbook412/files/90.gif" border="0" align="absmiddle" alt=". Она численно равна работе изотермического разделения объема жидкости на две части, т. е.

формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.6.gif" border="0" align="absmiddle" alt="(3.6)

Принимая во внимание формулу (3..gif" border="0" align="absmiddle" alt="

Таблица 3.1. Работа адгезии формула" src="http://hi-edu.ru/e-books/xbook412/files/94.gif" border="0" align="absmiddle" alt=" при различных краевых углах смачиваемости 476" border="1">

, град.

Характер смачивания

180 -1 0 0 полное несмачивание >90 От -1 до 0 >0 От 0 до очень слабое смачивание 90 0 0,5 0,5 слабое смачивание <90 От 0 до 1 >0,5 >0,5 хорошее смачивание 0 1 1 полное смачивание

Полное смачивание - практически реализуемый случай (например, совершенно чистая поверхность стекла полностью смачивается водой). Краевой угол здесь не устанавливается, так как жидкость растекается в виде тончайшей (в пределе мономолекулярной) пленки по поверхности твердого тела. При полном смачивании, очевидно (см. формулу 3.4):

формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.8.gif" border="0" align="absmiddle" alt="(3.8)

Представления об избирательном смачивании твердых тел впервые ввел П. А. Ребиндер в 1930-х гг. Он предложил классифицировать поверхности твердых тел в зависимости от характера избирательного смачивания водой следующим образом:

формула" src="http://hi-edu.ru/e-books/xbook412/files/84.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

Gif" border="0" align="absmiddle" alt=", т. е.

формула" src="http://hi-edu.ru/e-books/xbook412/files/87.gif" border="0" align="absmiddle" alt=", поверхностных натяжений и их составляющих для жидкости и твердого тела.

формула" src="http://hi-edu.ru/e-books/xbook412/files/85.gif" border="0" align="absmiddle" alt=". Для этого на испытуемую поверхность наносят капли двух жидкостей, резко различающихся по полярности..gif" border="0" align="absmiddle" alt=" для каждой из этих жидкостей, после чего, подставив результаты в формулу (3..gif" border="0" align="absmiddle" alt=". Принимают, что

формула" src="http://hi-edu.ru/e-books/xbook412/files/104.gif" border="0" align="absmiddle" alt="). Эти жидкости характеризуются следующими параметрами поверхностного натяжения на границе с воздухом формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.13.gif" border="0" align="absmiddle" alt="(3.13)

(Как видно из этих цифр, поверхностное натяжение метилениодида определяется в основном дисперсионными силами, а поверхностное натяжение воды - полярными силами). Принимая во внимание эти величины, получаем следующие простые формулы для вычисления поверхностного натяжения твердых поверхностей:

формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.15.gif" border="0" align="absmiddle" alt="(3.15)

На смачиваемость поверхностей существенное влияние оказывают поверхностно-активные вещества (ПАВ). Они адсорбируются на поверхности раздела фаз, снижая поверхностное натяжение.

В зависимости от того, на какой поверхности раздела фаз, участвующих в смачивании, происходит адсорбция ПАВ, различают три основных случая:

Gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".

В настоящее время накоплен большой экспериментальный материал по определению основных величин смачивания материалов офсетной печати. Измерения, выполненные различными исследователями, показали, что поверхностное натяжение офсетных красок лежит в интервале от 30 до 38 мН/м независимо от их состава. Поверхностное натяжение водных увлажняющих растворов, напротив, лежит в более широком интервале, в пределах от 30 до 75 мН/м.

Таблица 3.2. Поверхностное натяжение печатных красок и увлажняющих растворов, мН/м

Untitled Document

В табл. 3..gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" печатающих и пробельных элементов монометаллических (алюминиевых и биметаллических медь-хром) офсетных форм и вклад дисперсионной и полярной компонент.

Таблица 3.3. Поверхностная энергия печатающих и пробельных элементов форм, изготовленных на предварительно очувствленных монометаллических пластинах зарубежных фирм (536" border="1">

Пластина, фирма, страна

Печатающие элементы

Пробельные элементы

Позитивные:

P7S, "Kalle", ФРГ

FPM-N, "Fuji", Япония

Alympic, "Gold", Англия

GAP, "Polychrome", США

Ортохинондиазиды, ГДР

Негативные:

N3S, "Kalle", ФРГ

FNM-2, "Fuji", Япония

AQ, "Gold", Англия

CAN, "Polychrome", США

Поливинилциннамат, ГДР

Газетная форма, ГДР

Биметаллическая форма, ГДР:

Из табл. 3.2 видно, что в поверхностном натяжении увлажняющих растворов вклад полярной составляющей выше, чем дисперсионной, но у печатных красок поверхностное натяжение почти целиком определяется дисперсионной компонентой. В то же время дисперсионная часть печатающих элементов (табл. 3.3) значительно преобладает над полярной, а в пробельных элементах полярная составляющая превышает дисперсионную. Заслуживает внимания также то обстоятельство (табл. 3.3), что поверхностное натяжение исследованных металлов (медь и хром) относительно невелико (около 40-70 мН/м). Между тем в учебниках и справочниках для поверхностного натяжения твердых металлов даются величины формула" src="http://hi-edu.ru/e-books/xbook412/files/87.gif" border="0" align="absmiddle" alt=" или путем вычисления адгезионного напряжения выделение">Таблица 3.4. Краевой угол смачивания воды в вазелиновом масле на печатающих и пробельных элементах форм плоской печати

Untitled Document

Предварительно очувствленные пластины

на элементах

Пробельных

Печатающих

Исходная пластина

После проявления

После гидрофилизации

Копировальный слой на ОНХД (исходный)

После проявления

После гидрофилизации

Монометаллическая форма

На гладком алюминии
На алюминии с комплексной электрохимической подготовкой поверхности

Растекание

Растекание

На углеродистой стали

Биметаллическая форма

Никель - кобальт
Хром
Нержавеющая сталь
Медь

Таблица 3.5. Краевой угол смачивания воды и олеиновой кислоты на воздухе на пробельных элементах

Untitled Document

Таблица 3.6. Адгезионные свойства олеофильных и гидрофильных жидкостей на печатающих элементах

Untitled Document

Как видно из табл. 3.4-3.6, пробельные элементы печатных форм имеют краевой угол смачивания воды в избирательных условиях много меньше 90%, т. е. обладают ярко выраженными гидрофильными свойствами. На воздухе смачивающая способность воды на пробельном элементе настолько велика, что капля растекается по поверхности.

Однако гидрофильный характер поверхности не препятствует растеканию и олеофильных жидкостей. Олеиновая кислота смачивает на воздухе поверхность пробельного элемента так же хорошо, как и вода. Это объясняется тем, что металлы обладают высокой энергией поверхности и способны адсорбировать любую жидкость, как гидрофильную, так и олеофильную. Последние из-за своего низкого поверхностного натяжения обладают даже большей способностью к растеканию по поверхности металла. И только в том случае, когда поверхность контактирует одновременно с двумя разными по полярности жидкостями - вода и вазелиновое масло,- гидрофильная жидкость лучше смачивает гидрофильные поверхности (вода - пробельные элементы) и значительно хуже гидрофобные - печатающие элементы (углы смачивания воды изменяются с 20-57° на 115-145°). Печатающие элементы в противоположность пробельным имеют разные величины смачивания олеофильными и гидрофильными жидкостями (табл. 3.6). Величина адгезионного натяжения олеофильных жидкостей - около 30 мН/м, а гидрофильных - колеблется от отрицательного значения -9,7 до 26,9 мН/м и зависит в основном от поверхностного натяжения жидкости. Однако олеофильные жидкости на печатающих элементах имеют все же большее значение адгезии, чем гидрофильные, разница составляет не менее 4 мН/м.

Для изготовления современных форм плоской печати должны быть использованы в качестве основы высокопрочные металлы, обеспечивающие надежное крепление форм на скоростных офсетных машинах в процессе печатания тиража. И листовые, и рулонные офсетные машины имеют ротационный тип построения формоносителя, и формы закрепляются на цилиндре с усилием, с помощью специальных планок. Углы загибки форм в планках составляют 120°, 90° и 60°. Скорость печатания колеблется от 10 тыс/ч на листовых до 15-30 тыс/ч на рулонных машинах. Тиражность продукции составляет от нескольких тысяч до нескольких миллионов листов-оттисков.

В качестве металла-основы офсетных форм используют алюминий, магниевый сплав алюминия, углеродистую и нержавеющую стали. Показатели прочности этих металлов приведены в табл. 3.7.

Таблица 3.7. Показатели прочности металлов, используемых в качестве основы офсетных форм

Untitled Document

Металлические формы

Механические свойства

Число перегибов на губках диаметром 2 мм

Относительная износостойкость

Временное сопротивление разрыву

Относительное удлинение , %

алюминий АД1Н (0,3 мм)
Алюмомагниевый сплав АМг2 (0,3 мм)
Сталь углеродистая 08КП (0,3 мм)

Из механических свойств металлов, в наибольшей степени ответственных за эксплуатационную надежность в процессе печатания, можно выделить прочность, пластичность, сопротивление усталости и износостойкость. Прочность металла характеризуется максимальным условным напряжением, которое выдерживает материал при растяжении до разрушения; пластичность б определяется как относительное удлинение при растяжении. Сопротивление усталости характеризуется максимальным напряжением, которое выдерживает материал, не разрушаясь при повторно-переменных нагружениях. Косвенным показателем сопротивления усталости служит число перегибов. Износостойкость металла может быть оценена по объему сошлифованного металла при заданных условиях истирания. В табл. 3.7 значения износостойкости сталей и сплава алюминия приведены по отношению к износостойкости чистого алюминия.

Из табл. 3.7 видно, что углеродистая сталь значительно превосходит по прочностным показателям алюминий и даже его сплав. В связи с этим сталь сегодня - один из основных материалов при создании высокотиражных печатных форм, в том числе традиционных биметаллических и новых современных - монометаллических форм. Кроме указанных металлов при изготовлении офсетных форм используют медь, никель и хром в виде электролитических осадков толщиной от 1 до 8 мкм.

Помимо прочностных характеристик формные материалы должны отвечать и другим требованиям, чтобы обеспечить получение устойчивых пробельных и печатающих элементов. С этой точки зрения наибольший интерес для нас представляет способность металлов смачиваться олеофильными жидкостями и водой.

Стало традиционным мнение, что медь и цинк лучше смачиваются олеофильными жидкостями и на них более устойчивы печатающие элементы, а алюминий, никель, хром, сталь обладают гидрофильными свойствами и более пригодны для образования пробельных элементов. Эта точка зрения не совсем оправдана. Выше было показано, что металлы как тела, обладающие высокой поверхностной энергией, способны смачиваться любой жидкостью. Олеофильные жидкости с меньшим поверхностным натяжением даже лучше смачивают металлы, чем вода. Большинство исследователей считает, что металлы обладают гидрофобными свойствами. Однако практически мы имеем дело не с чистыми металлами, а с окисными соединениями на их поверхности. Степень и скорость окисления металлов на воздухе обусловлены степенью сродства металла к кислороду. У неблагородных металлов - железа, алюминия, никеля, кобальта, хрома - сродство к кислороду выражено наиболее сильно. Толщина окисных пленок, образующихся на этих металлах при комнатной температуре, по данным оптических и электронно-графических исследований, составляет от 20 до 100%.

В большинстве случаев первичные окисные пленки представляют собой кристаллические образования. Исключение составляют хром и алюминий, на которых при комнатной температуре может возникать аморфный окисел, который при повышении температуры приобретает кристаллическое строение. Окисные пленки на поверхности металла изменяют его физико-химическое состояние, повышая смачиваемость водой. При смачивании водой происходит гидратация окислов, которая усиливает гидрофильные свойства поверхности.

Во всех случаях поверхность формных пластин должна отвечать следующим требованиям:

  • иметь высокую твердость и износостойкость - для обеспечения тиражестойкости пробельных элементов формы;
  • обладать определенной микрогеометрией, шероховатостью - для обеспечения высокой адгезии печатающих элементов формы;
  • хорошо смачиваться копировальным слоем - для обеспечения высокой адгезии между слоем и поверхностью пластины.

Смачиваемость при этом является основной определяющей предпосылкой для высокой адгезии..gif" border="0" align="absmiddle" alt=". Смачиваемость зависит от природы поверхности и от ее шероховатости.

Шероховатость поверхности представляет собой сложное хаотическое чередование выступов и впадин. Она оценивается по микрорельефу, который записывается с помощью профилографа. Для характеристики микрорельефа по ГОСТ 2789-75 «Шероховатость поверхности» обычно используется один из двух параметров: среднее арифметическое отклонение профиля формула" src="http://hi-edu.ru/e-books/xbook412/files/111.gif" border="0" align="absmiddle" alt=". Кроме того, существует показатель коэффициента шероховатости k - отношение фактической площади поверхности с учетом площади впадин и выступов к проекции на горизонтальную плоскость..gif" border="0" align="absmiddle" alt=" уменьшается). Согласно уравнению Венцеля и Дерягина:

формула" src="http://hi-edu.ru/e-books/xbook412/files/f.3.17.gif" border="0" align="absmiddle" alt="(3.17)

т. е. работа адгезии выделение">k раз. Шероховатость поверхности оказывает существенное влияние и на пробельные элементы. В. С. Лапатухин ввел понятие «влагоемкости» пробельных элементов, которая пропорциональна шероховатости.

Таким образом, с точки зрения создания условий для образования надежных пробельных и печатающих элементов необходимо придать поверхности металла определенную шероховатость. Однако с точки зрения графической точности передачи элементов изображения предпочтение следует отдать гладкой поверхности.

Многочисленные исследования показывают, что перечисленным выше требованиям отвечает поверхность с шероховатостью формула" src="http://hi-edu.ru/e-books/xbook412/files/110.gif" border="0" align="absmiddle" alt=" от 0,2 до 1,2 мкм.

Для изготовления монометаллических форм используют два типа металлов-основ: алюминий и углеродистую сталь.

Ведущее положение в полиграфической промышленности всего мира занял алюминий как основной материал для изготовления монометаллических форм. В отечественной полиграфии используется алюминий марки АД1Н, представляющий собой практически чистый металл (99,3 %) с естественными примесями меди, магния, марганца, железа и кремния. Химический состав алюминия регламентируется ГОСТ 4784-74 «Алюминий и сплавы алюминиевые, деформируемые. Марки». Специфические требования полиграфической промышленности отражены в ГОСТ 10703-73 «Листы алюминиевые для полиграфической промышленности».

В последние годы металлургическая промышленность нашей страны добилась крупных успехов в качестве отделки поверхности металлов. Так, алюминий имеет 10 классов чистоты отделки поверхности (опред-е">Обезжиривание алюминиевых листов проводят с целью удаления с поверхности консервирующей смазки, масляных следов, грязи. Для этого используют 5 %-ный раствор едкого натра, нагретого до 50-60°С. Растительные или животные жиры омыляются горячим щелочным раствором, а минеральные масла образуют эмульсии и благодаря этому отделяются от поверхности алюминия. Процесс протекает в течение 1-2 мин и сопровождается растравливанием поверхности и бурным выделением водорода:

опред-е">Декапирование поверхности необходимо для удаления шлама и осветления, при этом используют 25 %-ный раствор азотной кислоты с добавкой фторида аммония для дополнительной равномерной затравки.

Электрохимическое зернение алюминиевых пластин позволяет получить равномерный микрорельеф поверхности, развитую мелкокристаллическую структуру (термин «зернение» появился по аналогии с механическим зернением шариками, которое заменила электрохимическая обработка). Электрохимическое зернение производится в разбавленной соляной кислоте (0,3- 1 %) под действием переменного тока (за рубежом используют азотную кислоту)..gif" border="0" align="absmiddle" alt=" мкм.

Анодное оксидирование шероховатой поверхности алюминия проводится с целью получения прочной и пористой оксидной пленки определенной толщины с мелкозернистой структурой, являющейся сильным адсорбентом. Анодные окисные пленки к тому же хорошо защищают алюминий от коррозии и устойчивы на трение и на износ. Оксидирование алюминия можно проводить в сернокислом или щавелевокислом или хромовокислом электролитах. Последние работают только при высоком напряжении (40- 60 В), поэтому в отечественной практике используют раствор реактивной серной кислоты. Пластину помещают в гальванованну в качестве анода, катодом служит свинец. При электролизе на аноде выделяется кислород, который взаимодействует с алюминием с образованием оксида формула" src="http://hi-edu.ru/e-books/xbook412/files/117.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=". В связи с этим поверхность алюминия становится более гидрофильной.

Толщина окисной пленки растет пропорционально времени оксидирования, но пленка становится более пористой. Большая пористость нежелательна, так как может стать причиной возникновения брака в формном процессе (неполное удаление копировального слоя при проявлении копий, тенение форм в процессе печатания).

Оптимальный режим оксидирования в 20 %-ном растворе серной кислоты: плотность тока - 1,0-1,5 формула" src="http://hi-edu.ru/e-books/xbook412/files/120.gif" border="0" align="absmiddle" alt=" А.

Наполнение оксидной пленки предусматривает снижение пористости пленки, уменьшение ее активности и улучшение гидрофильных свойств поверхности. Для наполнения оксидной пленки используют горячую воду, пар или раствор натриевого жидкого стекла. В отечественной практике выбран 5 %-ный раствор жидкого стекла, который взаимодействует с алюминием с образованием устойчиво гидрофильной пленки. Равновесный краевой угол воды на воздухе равен 0°, а в избирательных условиях - около 10°.

Натриевое жидкое стекло представляет собой водный раствор силиката натрия общей формулы выделение">m - силикатный модуль от 1,5 до 3,5..gif" border="0" align="absmiddle" alt=". Водный раствор 5 %-ной концентрации имеет рН II. В щелочной среде кремнезем находится в полимерном, коллоидном состоянии и способен на любую степень гидратации. Гидратированный коллоидный кремнезем заполняет поры оксида алюминия и одновременно увеличивает сродство поверхности к воде.

Помимо жидкого стекла раствор для наполнения содержит натриевую соль карбоксиметилцеллюлозы. Она адсорбируется на поверхности в виде агрегатов, молекул и вторичных структур, которые образуют на поверхности плотный гидрофильный слой.

Промывка пластин. После всех операций проводится тщательная промывка пластин. После первой и второй операции она важна для того, чтобы не допустить попадания шлама в ванну зернения; после зернения - чтобы не допустить попадания ионов хлора в ванну оксидации; после оксидации - чтобы не допустить попадания кислоты в ванну наполнения. При перенесении в ванну наполнения пластины, плохо отмытой от кислоты, происходит нейтрализация кислоты на поверхности пластины и в результате тормозится процесс наполнения. Промывка пластины после операции наполнения должна удалить с поверхности щелочной раствор силиката натрия, чтобы не разрушался нанесенный затем копировальный слой.

Таким образом, в результате комплексной электрохимической обработки поверхность алюминия приобретает определенную шероховатость (формула" src="http://hi-edu.ru/e-books/xbook412/files/124.gif" border="0" align="absmiddle" alt=". Гидрофильные свойства поверхности обусловлены наличием на ней хемосорбционных пленок силиката натрия и натриевой соли карбоксиметилцеллюлозы. Это позволяет при изготовлении печатных форм исключить операцию гидрофилизации.

Резюмируя, можно сказать, что электрохимическое зернение ответственно за микрогеометрию, шероховатость поверхности; анодное оксидирование - за износостойкость и адсорбционную активность; наполнение - за гидрофильные свойства поверхности и полноту удаления копировального слоя при проявлении копий. И еще одна роль принадлежит операции наполнения: из пор оксидного слоя вытесняется окклюдированный кислород и тем самым улучшается впоследствии контакт поверхности металла с копировальным слоем.

Показатели качества поверхности алюминиевых пластин

Untitled Document

В настоящее время установлено, что при электрохимическом зернении на поверхности образуются вогнутые полушария, так называемые чашки, с размерами 0,2-2,0 мкм. В чашках формируются структурные элементы оксидного слоя - поры.

На рис. 3.3 показана схема уровней и структурных элементов алюминиевой пластины после комплексной электрохимической подготовки. Из схемы видно, что площадь поверхности алюминия значительно возрастает по сравнению с первоначальной. А при условии хорошего смачивания это должно привести к увеличению площади контакта с копировальным раствором, с водой, с коллоидом, что приведет к увеличению адгезии с этими жидкостями и обеспечит стабильный формный и печатный процессы.

Предпосылкой использования углеродистой стали в качестве основы при изготовлении монометаллических печатных форм явились исследования, проведенные во ВНИИ полиграфии. Впервые было показано, что процесс устойчивой гидрофилизации углеродистой стали обязательно сопровождается пассивированием поверхности и достижение устойчивой гидрофилизации возможно только при условии присутствия на поверхности фазового защитного окисла опред-е">Обезжиривание углеродистой стали проводят электрохимически в щелочном растворе при плотности тока -10опред-е">Декапирование стальных пластин 5 %-ным раствором серной кислоты способствует удалению шлама и нейтрализации поверхности.

Электрохимическое зернение проводится на аноде при плотности тока 2 опред-е">Пассивирование поверхности проводится с целью уменьшения химической активности стали, создания поверхностных защитных пленок в результате адсорбции и хемосорбции или образования фазовых пленок, приводящих к торможению коррозионного процесса.

В качестве пассивирующих веществ могут быть использованы многие соли щелочных металлов: нитриты, хроматы, фосфаты, силикаты, бораты, молибдаты и др., а также бензоаты и фенилацетаты. Наибольший практический интерес представляет использование силиката натрия, который адсорбируется на поверхности стали в виде кремнегеля и образует совместно с гидратом окиси железа защитную пленку, обладающую в то же время высокими гидрофильными свойствами.

Пассивация металла, связанная с явлениями адсорбции или образованием фазовых слоев, сопровождается снижением емкости двойного электрического слоя электрода. На рис. 3.4 приведены кинетики изменения емкости С (опред-е">Показатели качества поверхности пластин из углеродистой стали

Untitled Document

Таким образом, в результате электрохимического зернения и химической пассивации поверхность углеродистой стали приобретает необходимые свойства (">

1) качество фотоформы - оптическая плотность растровых элементов и про­белов, геометрические размеры элементов, резкость и ровность края;

2) фототехнические свойства копировального слоя - светочувствительность, контрастность, область спектрального поглощения, разрешающая и выде­ляющая способности;

3) физико-химические свойства копировального слоя - адгезия к формной пластине, однородность покрытия, толщина, внутренние напряжения, химическая стойкость к проявителю;

4) свойства формной подложки - коэффициенты отражения, поглощения УФ излучения, показатель шероховатости, способность к гидрофилизации или гидрофобизации;

5) наличие зазора в системе фотоформа - пленка копировального слоя;

6) параметры осветителей - спектральный состав и мощность излучения, параллельность светового потока;

7) состав проявителя и режимы проявления;

8) состав травящего раствора и режимы химического трав­ления (для биметаллических форм);

9) состав обрабатывающих растворов и режимы обработки (удаления задубленного слоя, гидрофилизации, гидрофобизации).

В данном разделе рассматриваются операции, с помощью которых изо­бражение с растровой фотоформы переносится на поверхность формной пла­стины, т. е. копировальный процесс.

Копировальный процесс на предварительно очувствленных пластинах включает следующие операции: на монометаллических пластинах: совме­щение монтажа диапозитива с копировальным слоем, экспонирование, проявление, промывка, сушка копии; на полиметаллических пластинах: совмещение монтажа диапозитивов с копировальным слоем, экспонирование, проявление, химическое дубление, промывка, сушка копии.

Совмещение монтажа диапозитивов с копировальным слоем предвари­тельно очувствленных пластин проводится в копировальной раме по штиф­там. Приводочные отверстия в пластине и монтажах пробивают предва­рительно с помощью пробойника ФПШ-110. Вслед за совмещением идет экспонирование слоя.

При экспонировании надо иметь в виду, что копировальные слои, по сравнению с фототехническими пленками на основе галогенидов серебра, имеют следующие особенности:

формула" src="http://hi-edu.ru/e-books/xbook412/files/130.gif" border="0" align="absmiddle" alt=". Следующее требование - равномерность освещенности стекла копировальной рамы. Считается при­емлемой неравномерность, не превышающая 20 % по всей площади пла­стины. Это достигается при помощи специальных отражателей. Третье требование к осветителям - параллельность (коллимация) светового пучка. В полиграфии на практике используется дистанционная коллимация, вы­полняемая путем перемещения источника света на достаточное расстояние от поверхности копировального слоя.

Еще до недавнего времени в качестве источников освещения в полигра­фической промышленности использовали белопламенную угольную дуговую лампу и ксеноновые лампы, которые помимо УФ излучения в своем спектре содержат значительную долю видимого и ИК. излучения. В настоящее время основным источником освещения копировальных слоев служат металлогалогенные лампы.

Металлогалогенные лампы представляют собой газоразрядные ртутные лампы высокого давления с добавкой галогенидов различных химических элементов. Отечественная промышленность выпускает два типа металлогалогенных ламп: мощностью 3 кВт, ДРГТ-3000 и ДРТИ-3000.

Как было показано в главе 2, при экспонировании позитивных копировальных слоев происходит фотодеструкция ОНХД и образование щелочерастворимой инденкарбоновой кислоты. На рис. 3. 10 показана кинетика фото­деструкции ОНХД - кривые поглощения копировального слоя при различ­ной продолжительности экспонирования. На рис. 3.10 видно постепенное уменьшение оптической плотности при длине волны 405 нм, характерной для диазогруппы. Негативный копировальный слой на основе ПВС и диазосмолы при экспонировании теряет растворимость в водных проявителях. После прекращения экспозиции дополни­тельных изменений в копировальном слое не происходит, что свидетельст­вует об отсутствии постэффекта и яв­ляется важной характеристикой дан­ных слоев.

На процесс экспонирования влияют оптические явления в системе: источ­ник света - диапозитив - копиро­вальный слой - формный материал. К ним относятся дифракционные яв­ления, эффекты отражения, интерфе­ренция. Основным моментом в появле­нии дифракционных эффектов и уси­лении их действия является наличие физического зазора между диапозити­вом и копировальным слоем. Однако влияние дифракционных явлений за­метно только при воспроизведении элементов микронных размеров.

Эффекты отражения заключаются в возникновении в копировальном слое «стоячих волн» в результате появления интерференции отраженного светового потока с проходящим светом. Возникновение интерференционных стоячих волн в копировальном слое приводит к его дополнительному экспони­рованию в местах, защищенных печатающими элементами диапозитива. На практике это называют «закопировкой», которая для негативных слоев выражается в задубливании печатающих элементов, а для позитивных - в деструкции печатающих элементов и удалении их при проявлении копии. Чем больше отражательная способность формной поверхности и ближе к нор­мали падающий поток излучения, тем лучше условия для образования стоячих волн. В этой связи использование гладкой поверхности при изго­товлении предварительно очувствленных алюминиевых пластин УПА и металлогалогенной лампы с узким спектром излучения является предпосылка­ми для образования интерференционных стоячих волн.

Влияние стоячих волн можно уменьшить путем уменьшения толщины копировального слоя, уменьшения экспозиции, путем введения в слой инерт­ного поглотителя отраженного потока, созданием противоореольных покры­тий, уменьшающих отражение. Использование шероховатой поверхности формного материала также способствует исключению эффекта отражения.

Режим экспонирования на предварительно очувствленные пластины выбирается таким образом, чтобы обеспечить наибольшую разрешающую способность и придать копировальному слою необходимые физико-химиче­ские свойства (проявляемость, химическую стойкость и др.). На практике зачастую растровые элементы изображения имеют пологий профиль с макси­мумом оптической плотности (до 2,ОБ) в центре точки и малой плотностью (до 0,5Б) по краям. Размер такой точки на копии не может быть постоянным.

Поэтому контроль правильности выбора экспозиции осуществляют не по изображению, а по воспроизведению контрольных элементов. Для контроля экспозиции служит полутоновая сенситометрическая шкала СПШ-К. Шка­ла выпускается в ОЭП г. Кимовска по ТУ 2901-100-83 «Шкала сенсито­метрическая прозрачная полутоновая ступенчатая СПШ-К для контроля процесса экспонирования офсетных печатных форм». Шкала изготавливает­ся на фототехнической пленке типа ФТ-31 и содержит 11 полей..gif" border="0" align="absmiddle" alt=" Б.

Правильность выбора продолжительности экспонирования контролируют по номеру полностью проявленного поля шкалы на копиях. На мономе­таллических формах полностью проявленным полем следует считать поле, которое совершенно не воспринимает краску: на биметаллических формах полностью проявленное поле воспринимает краску так же, как плашка.

Оптимальное воспроизведение шкалы СПШ-К обычно приводится в каж­дой технологической инструкции на процесс изготовления форм.

В процессе проявления копии на монометаллических пластинах удаля­ются экспонированные участки слоя и образуется позитивная копия фотофор­мы; на полиметаллических пластинах, напротив, удаляются неэкспонирован­ные участки и образуется негативная копия. Для проявления копий на монометаллических пластинах служат водно-щелочные растворы, а для про­явления копий на полиметаллических пластинах - вода.

Задубленный при экспонировании негативный копировальный слой не об­ладает, однако, достаточной кислотостойкостью, поэтому его после проявления подвергают дополнительному химическому дублению соединениями трехвалентного хрома. В результате образуются комплексы ионов хрома с гидроксильными группами поливинилового спирта, не израсходованными при фотохимической сшивке. Этот пространственно сшитый полимер обладает высокой твердостью, химической стойкостью, высокой адгезией к поверх­ности металла и надежно защищает пробельные элементы при травле­нии хрома на печатающих элементах копии.

Выполнение всех этих операций заканчивается промывкой и сушкой копий. Сушка имеет особое значение для негативного слоя, так как способ­ствует испарению воды из набухшего слоя и восстановлению геометри­ческих размеров элементов изображения. Поэтому режимы сушки должны строго соответствовать рекомендациям технологических инструкций. Обычно температура сушки не превышает 70°С с тем, чтобы не происходило слишком быстрого и резкого испарения воды и деформации элементов изображе­ния.

После сушки копия готова к контролю и корректуре.

На готовой копии контролируется:

    1) наличие всех элементов изображе­ния;

    2) полное удаление слоя, отсутствие вуали на проявляемых участках;

    3) дефекты по полю копировального слоя;

    4) воспроизведение полутоновой контрольной копировальной шкалы СПШ-К;

    5) воспроизведение растровой контрольной шкалы РШ-Ф.

При обнаружении дефектов проводят корректуру копий соответствую­щими корректирующими составами.

В результате проведения копировального процесса изображение пере­несено на поверхность формной пластины, получена копия с монтажа диапозитивов. После этого следует вторая часть технологического про­цесса, которую условно можно назвать, собственно, формным процессом. В этом процессе проводят специальную физико-химическую обработку копий и получают устойчиво гидрофобные печатающие и гидрофильные пробельные элементы на поверхности формной пластины, т. е. получают печатную форму.

Копия на монометаллических пластинах (гладкого алюминия или угле­родистой стали) представляет собой участки исходного копировального слоя, соответствующие изображению, т. е. печатающим элементам, и участ­ки чистого металла, соответствующие пробельным элементам.

Копировальный слой на основе ОНХД имеет краевой угол смачивания воды в избирательных условиях 118°, т. е. обладает ярко выраженными гидрофобными свойствами. Вспомним также (табл. 3..gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" равна 4-8 мН/м. Отсюда также следует, что сродство копировального слоя к печатным краскам велико, что подтверждает воз­можность использования слоя в качестве основы печатающих элементов формы.

Кроме перечисленных выше параметров, печатающие элементы должны обладать высокой адгезией к поверхности формной пластины и высокой механической прочностью. Эти свойства обеспечиваются физико-химически­ми параметрами копировального раствора (составом растворителей, их температурой и теплотой испарения, химическим строением светочувстви­тельных и пленкообразующих твердых составляющих, наличием модифици­рующих добавок), а также условиями формирования и сушки копиро­вального слоя. Оптимальное сочетание этих параметров отрабатывается на стадии изготовления предварительно очувствленных пластин в условиях централизованного производства и было рассмотрено выше.

Таким образом, по своим физико-химическим и механическим свойствам копировальный слой на основе ОНДХ отвечает требованиям, предъявляемым к печатающим элементам. Практика показала, что тиражестойкость форм УПА, изготовленных на пластинах гладкого алюминия, составляет 50 тыс. оттисков при печати на листовых машинах.

Однако предварительно очувствленные пластины на углеродистой стали были разработаны для печати на рулонных машинах тиражом более 100 тыс. оттисков. Да и алюминиевые пластины на сплаве АМГ-2 пригодны для этих целей по механическим прочностным свойствам подложки. Чтобы повысить тиражестойкость печатающих элементов, они должны быть под­вергнуты термообработке при повышенной температуре.

При температуре 150-240 °С в копировальном слое происходят хими­ческие превращения олигомеров в полимеры, образуются сшитые структуры резольных составляющих слоя. Происходит «отверждение» пленки, т. е. образуются все возможные химические связи между отдельными компо­нентами. Это приводит к резкому повышению всех физико-химических и механических показателей пленки.

Во ВНИИ полиграфии была проведена работа по оценке механи­ческой прочности пленки копировального слоя на углеродистой стали после термообработки при температуре 210°С в течение 6 мин. Механическую прочность оценивали методом микрорезания. Стальной, иглой под фиксируе­мой нагрузкой проводили резание слоя и оценивали глубину реза (h , мкм) и ширину (l , мкм) с помощью профилографа «Калибр». В табл. 3.10 приведе­но изменение этих величин после воздействия температуры для нескольких составов слоя.

Таблица 3.10. Влияние термообработки на механическую прочность копировального слоя

Untitled Document

Приведенные в табл. 3.10 данные свидетельствуют о том, что глубина бороздки после термообработки уменьшается в 5-10 раз, а ширина в 2-4 раза, т. е. прочность слоя к механическому воздействию значительно воз­растает.

Однако высокая механическая прочность слоя - не единственный фактор высокой износостойкости слоя в тиражной печати. В печатном процессе форма испытывает воздействие многих факторов: циклические нагрузки, трение в паре с офсетным цилиндром, красочными и увлажняющими валиками, абразивное действие бумажной пыли, биение валиков и т. п., при­водящие к абразивному и усталостному износу формы. Помимо этого печа­тающие элементы формы находятся в контакте с разнообразными средст­вами: увлажняющим раствором, краскоочищающими пастами и средствами для смывки резин. В связи с этим в исследованиях ВНИИ полиграфии было оценено влияние термообработки на устойчивость слоя к воздействию указанных механических и химических факторов. Оценку проводили комп­лексно по показателям износостойкости слоя в процессе истирания, адге­зии к поверхности металла, химической стойкости.

На рис. 3.11. показано влияние температуры термообработки на хими­ческую стойкость к органическому растворителю (кривая 1) и раствору 10 %-ного едкого натра (кривая 2), износостойкость (кривая 3), адгезию к поверхности стали (кривая 4). Как видно из рис. 3.11 , химическая стой­кость слоя возрастает скачкообразно в интервале температур 140-180°С. Кривая зависимости износостойкости также имеет резкий подъем в области температур 170-220°С, после чего ход кривой замедляется. Адгезия слоя к поверхности металла достигает максимума в зоне температур 130- 220°С, а затем начинает падать и может опускаться ниже исходных значе­ний.

Аналогичные результаты получены и для алюминиевых пластин.

Таким образом, наибольший эффект от термообработки может быть достигнут только при соблюдении определенных условий нагрева. Так, температуры ниже 180°С не обеспечивают достаточной износостойкости слоя, а перегрев пластин выше 240°С уменьшает адгезию слоя. В технологи­ческих инструкциях рекомендуется температура 210-240°С и продолжитель­ность обработки - 4-5 мин.

Косвенным показателем качества термообработки может служить цвет слоя на плашке. При нагреве в правильном режиме слой на алюминиевых пластинах приобретает золотистую окраску, на стальных - коричневую.

Практика показала, что тиражестойкость печатных форм возрастает до 100-150 тыс. на пластинах ДОЗАКЛ и до 300 тыс. на стальных пластинах Лысьвенского металлургического завода.

Надо иметь в виду, что повышенная температура оказывает сильное воздействие на алюминий: показатель прочности снижается, пластичность возрастает. Во время печати это приводит к образованию трещин у клапа­нов формы. Поэтому термообработку алюминиевых форм следует проводить при температуре не выше 200°С. Термообработка стальных пластин на прочностные показатели их практически не влияет.

Таким образом, устойчивые печатающие элементы монометаллических печатных форм образуются на исходном или подвергнутом термообработ­ке копировальном слое.

Условия создания устойчивых пробельных элементов зависят от природы металла и состава гидрофилизующего раствора.

Для создания устойчивых пробельных элементов производят гидрофилизацию - специальную обработку копии гидрофилизующим раствором. Основным компонентом его является кислота или соль, которая очищает по­верхность данного металла от загрязнений и одновременно химически взаимодействует с ним, образуя гидрофильные минеральные пленки. Вто­рым компонентом раствора является гидрофильный полимер, который адсор­бируется на свежеобразованной пленке, образуя гидрофильный органи­ческий слой. Этот слой является «губкой», которая при смачивании водой хорошо впитывает и удерживает в себе часть воды. Наиболее распространен­ным составом гидрофилизующего раствора для алюминиевых пластин является смесь разбавленной 3 %-ной ортофосфорной кислоты с карбок-симетилцеллюлозой или декстрином.

На поверхности углеродистой стали устойчивые гидрофильные пленки образуются в 10 %-ных растворах ферроцианида калия (желтая кровяная соль) или 5 %-ного раствора триполифосфата натрия. Полагают, что ионы железа образуют комплексные соединения с анионом гексацианоферрата, а также с полимерными цепочками полифосфата. На обработанной таким образом поверхности краевой угол смачивания выделение">Таблица 3.12. Краевые углы смачивания в избирательных условиях

Untitled Document

Как видно из табл. 3.12, пробельные элементы форм, не покрытых защит­ным коллоидом, теряют свои гидрофильные свойства довольно быстро: через сутки они легко депрессируются, а через несколько суток становятся гидрофобными. Полимерная пленка очищенной карбоксиметилцеллюлозы надежно сохраняет пробельные элементы в течение месяца. Ре­комендуется добавлять к раствору КМЦ неионогенного ПАВ, например синтанола ДС-10, который препятствует ресорбции загрязнений из раство­ра при растворении защитного покрытия.

Как и в обычном процессе плоской печати с увлажнением, требования к формам для печати без увлажнения определяются принципами печатного процесса. В плоской печати без увлажнения после прокатывания красочного валика по поверхности формы краска должна остаться на пе­чатающих элементах, оставив пробельные элементы абсолютно чистыми. Иными словами, краска должна хорошо смачивать печатающие элементы и не смачивать (или плохо смачивать) пробельные элементы.

Отсюда вытекает основополагающее принципиальное требование к фор-, мам для печати без увлажнения: пробельные элементы должны обладать ми­нимальной свободной поверхностной энергией, намного меньшей, чем печа­тающие элементы, т. е. пробельные элементы должны быть образованы на пленке полимерного покрытия с низкой свободной энергией. Такими являются кремнийорганические полимеры, в частности полисилоксановые покрытия.

Во ВНИИ полиграфии в качестве материала для создания пробельных элементов формы для плоской печати без увлажнения был рекомендован диметилосилоксановый каучук. Покрытия получали из раствора в бензине с последующей перекисной вулканизацией при температуре 100-110°С в течение 2 ч.

Возможны следующие варианты технологического процесса изготовления форм для печати без увлажнения.

    1. На металлическую (алюминиевую) основу наносят копировальный слой, а на него - слой полисилоксанового каучука. Экспонируют через негатив или диапозитив в зависимости от характера копировального слоя. Проявляют копию, удаляя копировальный слой с печатающих элементов вместе с полисилоксановым покрытием. В результате получают форму, в которой печатающие элементы образованы на поверхности чистого металла, а пробельные элементы состоят из двухслойного покрытия: верх­него - полисилоксанового и нижнего - копировального слоя. На таком принципе построены формы фирмы «Терей» (Япония).

    2. Полисилоксановое покрытие наносят на проявленную копию, из­готовленную на ортонафтохинондиазидах. Затем с печатающих элементов органическим растворителем удаляют копировальный слой вместе с верхним покрытием. На форме печатающие элементы образованы на чистом металле, пробельные - на полисилоксановом покрытии.

    3. Для изготовления формы используют копировальный слой, обладающий низкой поверхностной энергией. Очевидно, это должен быть полисилокса-новый полимер со светочувствительным компонентом. Под действием света полимер структуризуется, сшивается, образует пробельные элементы, а про­явленные участки чистого металла являются печатающими элементами фор­мы. По такому варианту изготавливаются формы фирмы «ЗМ» (США).

    Во всех трех вариантах печатающие элементы форм для печати без увлаж­нения образованы на металле, а пробельные - на силоксановом покрытии. Таким образом, данные формы являются как бы антиподом по отношению к обычным формам.

    4. Форму изготовляют на лазерном автомате. Полисилоксановое по­крытие наносят на металлическую пластину с подслоем диэлектрика (смолы), обладающего низкой теплопроводностью. Лазерный луч модулируется в соответствии с оригиналом и выжигает слой полисилоксана в области печатающих элементов, которые создаются на диэлектрике. Пробельные элементы образуются на полисилоксановом покрытии с подслоем диэлектрика. Такая технология была реализована в Экспериментальной типографии ВНИИ полиграфии. Тиражестойкость форм составляла около 30 тыс. оттис­ков при печати на машине «Ромайор».

Печать без увлажнения имеет ряд существенных преимуществ: нет проб­лем поддержания баланса краска - увлажняющий раствор, сокращается время подготовки машины к печатанию, повышается насыщенность и идентичность тиражных оттисков, улучшается градационная передача изобра­жения.

Длительное время существовало мнение о невозможности реализации плоской офсетной печати без увлажнения. Действительно, невозможно создать пробельные элементы с абсолютным несмачиванием краской. Ряд советских и зарубежных ученых отмечают большую роль когезии краски в печатном процессе без увлажнения.

В последние годы появилась новая концепция, на наш взгляд, наиболее правильно трактующая механизм офсетной печати без увлажнения. По этой теории, восприятие краски пробельными элементами должно быть затруднено наличием или образованием низковязкого слоя растворителя, продиффундировавшего из краски. Поэтому при накатывании краски происходит разрыв по низковязкому слою растворителя (аналогично разрыву по воде на про­бельных элементах классических форм).

Условие образования граничного низковязкого слоя заключается в том, что параметры растворимости пробельных элементов формы и растворителя краски должны быть близкими. Следовательно, зная дисперсионные и поляр­ные составляющие поверхностного натяжения растворителя красок и поли­мерного покрытия пробельных элементов форм, можно составлять различ­ные системы. Примечательно, что из всех рассмотренных материалов сили­кон в качестве растворителя имеет самые большие области полярной и дисперсионной составляющих поверхностного натяжения.

Проекционное экспонирование в фотоаппарате непосредственно на форм­ный материал является перспективным направлением, так как позволяет уменьшить расход дефицитных серебросодержащих материалов, резко со­кратить технологический цикл воспроизведения оригинала, уменьшить трудо­емкость процесса, сократить производственные площади и рабочую силу.

Прямое экспонирование на формный материал базируется на использовании оригинала-макета, представляющего собой спусковой монтаж всех полос текста и иллюстраций на формат печатной формы. Текст оригинала может быть отпечатан на пишущей машинке, наборно-печатающей тех­нике или в виде распечаток с выводных устройств ЭВМ, фотонаборных полос на бумаге (фотобумаге), страниц ранее выпущенных изданий. Наиболее целесообразно применение фотонабора с выводом на фотобумагу. Иллюстрации обычно изготавливают также на фотобумаге, хотя допустимо использование в одном монтаже изображений на бумаге и на фотопленке.

Для переноса изображения проекционным экспонированием формный ма­териал должен обладать значительно более высокой светочувствительностью, чем обычные копировальные слои. В настоящее время только галогеносеребряные и электрофотографические материалы обладают доста­точной светочувствительностью и нашли промышленное применение для изготовления офсетных форм проекционным экспонированием в фоторепро­дукционных устройствах.

По способу дифференциации пробельных и печатающих элементов формы галогенсеребряные материалы можно разделить на две подгруппы:

    1) с диф­фузионным переносом солей серебра и проявляющего вещества

    2) много­слойные системы, состоящие из серебросодержащего и копировального слоев.

Электрофотографические материалы делятся на органические и неорганические, пригодные для прямого и косвенного способов изготовления форм (с переносом изображения с промежуточного носителя).

Изготовление форм методом диффузионного переноса основано на при­менении многослойных серебросодержащих материалов. Сущность его со­стоит в том, что галогеносеребряный экспонированный негативный слой проявляется в контакте с приемным слоем, который не является светочувствительным, не содержит галогенного серебра, но включает мелкодис­персные частицы сернистого или металлического серебра. В процессе обработки проявителем, содержащим растворитель галогенного серебра (на­пример, тиосульфат натрия), в негативном слое на неэкспонированных участках, соответствующих изображению оригинала, растворяется некото­рое количество галогенного серебра. Растворенное галогенное серебро диф­фундирует в приемный слой, где и восстанавливается проявителем до металлического серебра в результате каталитического действия зародышей металлического или сернистого серебра. Таким образом в приемном слое образуется позитивное серебряное изображение.

Светочувствительный и приемный слои могут находиться в одном мате­риале (однолистный вариант) или на разных материалах (двухлистный вариант). Первые промышленные материалы с использованием диффузионного переноса предусматривали двухлистный вариант. В этом случае светочувствительный негативный слой наносится на бумажную или пленоч­ную основу, а приемный слой на формный материал - алюминиевую фоль­гу или гидрофильную бумагу. После экспонирования светочувствительный негативный слой приводится в контакт с приемным слоем и проявляется в специальной ванне. На алюминиевой фольге комплекс серебра восстанав­ливается в олеофильное металлическое серебро электрохимическим путем, на гидрофильной бумаге - химическим. После вывода из проявляющего уст­ройства негативный материал отделяют от формной пластины, обрабаты­вают пробельные элементы формы.

Этот принцип использован фирмой «Агфа - Геверт» (ФРГ - Бельгия) при создании процессов Гевакопи и Копирапид. Аналогичные процессы разработаны фирмами «Эстман Кодак» (США), «Мицубиси Пэпир Ко» (Япо­ния), «Хаусан Элграфи» (Англия).

Начиная с 70-х гг. появились различные варианты однолистного формного материала с диффузионным способом переноса. Широкое про­мышленное применение, в том числе в нашей стране, нашли пластины Верилит фирмы «Кодак». Аналогичны им пластины Рапилит, Дирукталит, Супермастер фирмы «Агфа - Геверт» и пластины Сильвер-матер фирмы «Мицубиси». В качестве основы используется бумага или бумага, ламини­рованная пленкой. На нее наносятся три желатиновых слоя: нижний слой содержит проявляющее вещество; средний - светочувствительный негатив­ный галогенсеребряныйслой; верхний - предварительно засвеченный эмуль­сионный слой с гидрофильными свойствами, содержащий центры проявле­ния. После экспонирования в фотоаппарате образуется скрытое изобра­жение в среднем слое. Пластины обабатываются щелочным раствором, называемым активатором, в результате в среднем слое на засвеченных участках проявляется изображение и проявляющее вещество не проникает в верхний слой. Поэтому верхний слой на этих участках сохраняет свои гидрофильные свойства - образуются пробельные элементы. Незасвеченные участки среднего слоя не препятствуют проникновению проявителя в верх­ний слой. В результате в верхнем слое происходит восстановление галогенида серебра и гидрофобизация поверхности - образуются печатаю­щие элементы формы.

Время экспонирования составляет 10-15 с. Для обработки форм выпуска­ются специальные процессоры. Разработаны также автоматизированные репропоточные линии производительностью 2-3 формы/мин. Тиражестойкость форм - от 1 до 20 тыс. оттисков.

Изготовление форм с использованием электрофотографических процессов базируется на применении органических и неорганических фотополупро­водников. Сущность процесса заключается в появлении проводимости слоя под действием света (фотопроводимость), сопротивления некоторых заря­женных полупроводников пропорционально освещенности, т. е. в изменении фотопроводимости. При освещении фотопроводимость превышает темновую проводимость за 3 порядка. При этом на освещенных местах (пробелах) происходит полная нейтрализация зарядов, а на неосвещенных - печатаю­щих элементах - образуется скрытое электростатическое изображение (по­ложительное или отрицательное).

Широкое промышленное применение нашли материалы на основе органи­ческих фотополупроводников , в качестве которых используются главным образом карбазолы, а также оксазолы, триазолы и др. Они наносятся в смеси с высокомолекулярными смолами на бумажную или металлическую основу. Технологический процесс изготовления печатной формы включает следующие операции: зарядка слоя, проекционное экспонирование, проявле­ние, закрепление изображения, удаление слоя с пробельных элементов, гидрофилизация пробельных элементов, нанесение защитного коллоида.

Зарядку слоя проводят методом коронного разряда. Для удержания заряда в течение длительного времени слой полупроводника должен обладать высоким удельным объемным сопротивлением - около опред-е">Материалы на основе неорганических фотополупроводников содержат в качестве фотопроводящего слоя окись цинка или сульфид кадмия. Они наносятся на бумажные пластины и, как правило, обладают низкой тиражестойкостью - до 1 тыс. оттисков. Для изготовления форм выпускаются автоматические устройства, например Платемекер (Дания, фирма «Эско-фот»), Гевафакс (фирма «Агфа - Геверт»). Последний имеет производи­тельность до 7 форм/мин, рассчитан на работу с рулонным материалом и проявление жидким, положительно заряженным тонером. Основное назна­чение форм - оперативная полиграфия.

Изготовление печатных форм (общие сведения).

1.Высокая печать.

2.Глубокая печать.

3.Офсетная печать.

4.Трафоретная печать.

5.Флексография.

6.Заключение.

7.Литература.

1. Типографская (высокая) печать .

В высоком способе печати используются формы с выступающими печатающими элементами и углубленными пробельными (рис. 1).

Данный способ служит для изготовления самой разнообразной продукции – от ежедневных газет до высокохудожественных изобразительных изданий. Характерными признаками типографской печати являются:

  • красочный слой толщиной 2–3 мкм;
  • оборотный рельеф (деформация запечатываемого материала из-за избыточного давления при печати);
  • заметный рельеф букв.

К достоинствам высокого способа печати относятся:

  • хорошая разрешающая способность (печать с линиатурой растра 60–80 лин/см);
  • достаточная графическая, градационная и колористическая точность воспроизведения различных по своему характеру изображений;
  • стабильность качества воспроизведения изображения во всем тираже, что обусловлено отсутствием таких нестабильных процессов, как увлажнение печатных форм (в офсетной печати) или удаление краски с пробельных элементов форм (в глубокой печати).

Поверхность печатной формы высокой печати химически нейтральна и может воспринимать любой раствор, т.е. эти формы можно использовать для печати с применением красок, как на жировой основе, так и на базе водных и спиртовых растворителей.

В высокой печати используется большое многообразие печатных форм,

различающихся по многим признакам. В свою очередь, формы подразделяются на оригинальные и стереотипы. Оригинальные формы изготавливаются с текстовых или изобразительных оригиналов и предназначены для печатания тиража или для размножения печатных форм. Стереотипы - это формы-копии, полученные с оригинальных форм и служащие только для печатания тиража. Оригинальные изобразительные формы независимо от способа их изготовления обычно называются клише.

Печатные формы могут быть изготовлены в виде монолитных гибких или жестких (реже эластичных) пластин форматом, равным формату запечатываемого бумажного листа. Но они могут быть также составлены из отдельных пластин, содержащих одну или несколько полос издания. Используются также текстовые печатные формы, состоящие (набранные) из отдельных литер, воспроизводящих отдельные буквы, или целые строки текста. Такие формы называются наборно-отливными.

При изготовлении печатных форм высокой печати широко используют литейные, фотографические, химические процессы, процессы прессования, механической обработки металлов и полимеров. Тиражестойкость печатных форм зависит от печатного процесса. Она колеблется от нескольких десятков до 500 и более тысяч оттисков.

Широкое применение для печатания находят оригинальные формы, полученные формативной записью информации посредством копирования со штриховых, растровых или текстовых негативов на формные пластины, т.е. формы, изготавливаемые фотохимическими способами.

Основными стимулами развития высокой печати стали внедрение гибких и легких форм с малой глубиной пробельных элементов (0,4–0,7 мм), изготовленных на микроцинке, а также создание и применение фотополимерных пластин.

Высокая печать с металлических печатных форм в настоящее время используется редко, а печать с гибких форм на ротационных печатных машинах очень часто используется для изданий с большим тиражом.

Главными причинами, сужающими применение типографской печати, являются большая трудоемкость подготовительных операций и практически полное отсутствие в ее арсенале такого печатного оборудования, которое позволяло бы одновременно повысить иллюстративность и в соответствии с этим красочность изданий.


2. Глубокая печать .

Данный способ печати предполагает использование высокоскоростных ротационных машин (60–80 тыс. цикл/ч и более). Печатная форма представляет из себя цилиндр с углубленными печатными элементами, и возвышающимися пробельными (рис. 2).

Основными достоинствами способа глубокой печати являются:

  • высокие скорости, достигаемые благодаря использованию красок на основе летучих растворителей;
  • возможность применения больших форматов (до 6 м);
  • простое регулирование толщины красочного слоя на запечатываемом материале;
  • возможность обеспечения выразительных цветовых (декоративных) и градационных (плотностных) эффектов (передача полутонов за счет изменения толщины красочного слоя и вследствие этого – отсутствие муара).

К недостаткам данного способа можно отнести:

  • использование вредных, токсичных и взрыво- и пожароопасных красок;
  • наличие пилообразного края штриховых элементов (это связано с тем, что растрирование происходит на стадии изготовления печатной формы – создание ячеек (печатающих элементов), при этом растр имеет квадратную, а не круглую или овальную форму).

Процесс изготовления печатных форм для способа глубокой печати основан на сочетании фотохимических, электрохимических и механических процессов. Он состоит из следующих основных операций:

а) подготовка формного материала;

б) изготовление диапозитивов отдельных элементов фотоформы и их монтаж;

в) копирование – перенос монтажа на формный материал; г) травление формы и подготовка ее к печатанию.

Печатные формы для способа глубокой печати изготовляются непосредственно на формных цилиндрах. Каждая секция печатной машины снабжена 1 – 3 запасными формными цилиндрами, что позволяет готовить печатные формы заблаговременно.

Фотоформой, с которой изображение будет перенесено на цилиндр, в глубокой печати, как правило, служит монтаж полутоновых диапозитивов. Монтаж фотоформ проводят на монтажном столе с использованием монтажной измерительной сетки и линейки со штифтами для системы штифтовой приводки.

В связи с тем, что корректура готовой печатной формы способа глубокой

печати чрезвычайно затруднена, все элементы издания должны быть тщательно отработаны, проверены и откорректированы до их копирования на формный цилиндр, то есть в процессе монтажа диапозитивов.

В глубокой печати используется пигментный способ изготовления печатных форм, когда копирование монтажа диапозитивов производится не

непосредственно на формный материал, а на очувствленную пигментную бумагу с последующим переносом желатинового слоя пигментной бумаги на медную рубашку формного цилиндра. Желатиновый слой изображения пигментной бумаги создает рельефное изображение на поверхности формного цилиндра, и именно этот рельеф регулирует глубину травления печатающих элементов (min 6, max 80 микрон).

Беспигментный способ переноса изображения достигается путем прямого

лазерного гравирования изображения оригинала непосредственно на формном цилиндре.

К недостаткам способа глубокой печати относятся его высокая капиталоемкость, приводящая к концентрации больших производственных мощностей, довольно значительные затраты ручного труда на заключительной контрольно – корректурной стадии изготовления формных цилиндров, а также повышенная экологическая вредность и взрывоопасность некоторых красителей (на толуоле). Глубокая печать экономически выгодна при печатании больших тиражей – от 70-250 тыс. оттисков.

Глубокая печать считается оптимальным технологическим вариантом изготовления в первую очередь массовой иллюстрированной одно- и многокрасочной печатной продукции. Она прочно удерживает свои позиции за рубежом благодаря применению электронно-механического и лазерного гравирования печатных форм непосредственно с оригинала. В нашей стране она практически не используется.


В способе плоской офсетной печати используются печатные формы, на которых печатающие и пробельные элементы расположены практически в одной плоскости. Они обладают избирательными свойствами восприятия маслосодержащей краски и увлажняющего раствора – воды или водного раствора слабых кислот и спиртов. Печатающие элементы формы – гидрофобные, пробельные – гидрофильные (рис. 3).

Основным отличием данного способа печати от высокой и глубокой печати является использование промежуточной поверхности (офсетного цилиндра) при переносе краски с печатной формы на запечатываемый материал.

На данный момент офсетная печать является наиболее развитым и часто используемым способом печати. За последние десятилетия она прогрессивно развивалась, что обусловлено рядом причин:

  • универсальные возможности художественного оформления изданий;
  • возможность двухсторонней печати многокрасочной (в том числе и высокохудожественной) продукции в один прогон;
  • доступность изготовления крупноформатной продукции, как на листовых, так и на рулонных машинах;
  • наличие высокопроизводительного и технологически гибкого печатного оборудования;
  • улучшение качества и появление новых основных и вспомогательных технологических материалов, прежде всего бумаг, красок, декельных пластин;
  • внедрение в практику достаточно гибких и эффективных вариантов формного производства.

Существуют два способа получения форм для плоской офсетной печати: форматная запись изображения и поэлементная запись изображения.

Форматная запись изображения является основным способом изготовления форм и заключается в получении копий путем экспонирования изображения с фотоформы на монометаллическую пластину с последующей обработкой копии в проявляющем растворе.

Поэлементная запись осуществляется путем сканирования изображения, его преобразования с последующей лазерной записью печатных форм в результате воздействия лазерного излучения на приемный слой формного материала. Такая технология изготовления печатных форм известна как технология СTP (computer to plate).

Технология СTP бурно развивается и начинает занимать достойное место в области допечатного производства. Это связано с определенными особенностями технологии: высокая производительность способа, сокращение используемых материалов (отсутствие фотоформ, а в ряде случаев проявляющих растворов для пленок и пластин), высокая разрешающая способность получаемых форм из-за более резкого края растровой точки, так как изображение на форме появляется не с промежуточного носителя - диапозитива, а непосредственно из цифрового массива данных.

Несмотря на появление новой технологии CTP, в допечатных процессах на российских полиграфических предприятиях основным способом изготовления форм является форматная запись изображения. В Москве до недавнего времени лишь на нескольких полиграфических предприятиях установлены системы CTP. Потребуется еще много времени, чтобы этот способ форматной записи изображения был заменен на технологию CTP, поэтому для успешной конкуренции способов получения печатных форм производители офсетных монометаллических пластин совершенствуют свойства своих материалов. Поставщики пластин проводят исследования, направленные на улучшение свойств материалов для повышения чувствительности копировальных слоев, увеличения разрешающей способности пластин, повышения тиражестойкости печатных форм.

В настоящее время на рынке полиграфических материалов представлено достаточно большое количество разнообразных типов формных пластин, используемых для изготовления печатных форм. На сегодняшний день основными поставщиками офсетных монометаллических пластин являются компании Agfa (Германия), Lastra (Италия), Fuji (Япония) и др. В большинстве своем все эти пластины имеют схожие состав и структуру.

Монометаллическая формная пластина фирмы Lastra Futura Oro имеет структуру, показанную на ().

Рис. 1. Структура предварительно очувствленной монометаллической формной пластины Futura Oro


В качестве основы может использоваться алюминий, который занял ведущее положение в полиграфической промышленности всего мира, как основной материал для изготовления монометаллических форм. Это объясняется тем, что алюминий обладает рядом достоинств: небольшим весом, хорошими гидрофильными свойствами получаемых на нем пробельных элементов. Увеличение прочностных свойств металла возможно за счет легирования его магнием, марганцем, медью, кремнием, железом, однако при этом ухудшается пластичность алюминия. Обработка поверхности алюминия, отдельных листах, так и непрерывной обработкой в рулоне. Чаще всего используется обработка с рулона для того, чтобы изготавливать пластины с постоянными физическими и механическими характеристиками.

Изготовление каждой предварительно очувствлённой пластины представляет собой серию сложных и точных производственных процессов. В настоящее время используется технология комплексной электрохимической обработки алюминия, включающая следующие последовательные операции: обезжиривание, декапирование, электрохимическое зернение, анодирование (анодное оксидирование и наполнение оксидной пленки), нанесение копировального слоя (полив слоя), сушка.

Рассмотрим основные стадии изготовления предварительно очувствлённой пластины.

Обезжиривание: фаза обработки заключается в тщательной очистке металла, который может содержать консервирующую смазку, масляные следы, шлаки. Качество конечной продукции зависит не только от чистоты химического процесса, но и от абсолютной чистоты металлической основы. Для удаления всех загрязнений с поверхности алюминия используют раствор едкого натра, нагретого до 50-60 0С. Процесс протекает в течение 1-2 мин и сопровождается бурным выделением водорода и растравливанием поверхности.

Декапирование: процедура проводится для удаления шлама и осветления, при этом используют 25-процентный раствор азотной кислоты с добавкой фторида аммония для дополнительной равномерной затравки.

Электрохимическое зернение: после обезжиривания обрабатываемой поверхности производится электрохимическое зернение алюминия, которое позволяет получить равномерный микрорельеф, развитую мелкокристаллическую структуру, после чего поверхность пластины становится похожей по структуре на губку с очень тонкими порами. При этом контактная площадь поверхности увеличивается в 40-60 раз по сравнению с начальной площадью поверхности необработанного алюминия. Микрошероховатая структура поверхности металла, полученная в результате электрохимического зернения, позволяет увеличить адгезию копировального слоя и лучше удерживать воду, необходимую для увлажнения в процессе печатания.

Термин «зернение» появился по аналогии с механическим зернением шариками, которое заменила электрохимическая обработка. Электромеханическое зернение производится в разбавленной соляной или азотной кислоте (0,3-1 %) под действием переменного тока. В результате образуется микрошероховатая поверхность металла. Выбор раствора кислоты определяется необходимой степенью развития поверхности. Величина напряжения электрического тока, пропускаемого через кислоту, составляет несколько десятков тысяч вольт. Пластины, которые зернятся в азотной кислоте, отличаются более развитой мелкопористой структурой поверхности алюминия, а пластины, обработанные в соляной кислоте, характеризуются более крупной структурой зернения. Структура зернения во многом влияет на свойства печатных форм, изготавливаемых на офсетных пластинах. Значение показателя шероховатости (Ra - среднее арифметическое отклонение микронеровностей от средней линии профиля) может повлиять на разрешающую способность формной пластины, на возможность появления дефекта «непрокопировки» в формном процессе, на гидрофильные свойства пробельных элементов, на различное время для достижения баланса краска-вода в печатном процессе.

Анодирование поверхности увеличивает твердость и улучшает устойчивость офсетных форм к механическим воздействиям и химическим веществам, которые используются в процессе печатания. Данный процесс состоит из двух стадий: анодного оксидирования и наполнения оксидной пленки.

Анодное оксидирование шероховатой поверхности алюминия проводится с целью получения прочной и пористой оксидной пленки определенной толщины с мелкозернистой структурой. Анодные оксидные пленки к тому же хорошо защищают алюминий от коррозии и устойчивы к трению и износу. Оксидирование алюминия можно проводить в сернокислом или хромовокислом электролитах. Предполагают, что анодная пленка состоит из двух слоев: тонкого барьерного слоя, непосредственно прилегающего к металлу, и пористого наружного. Наружный слой образуется в результате частичного растворения барьерного слоя под действием серной кислоты. Чем больше концентрация кислоты, тем выше пористость пленок.

В процессе оксидирования наружный слой утолщается вследствие непрерывного превращения глубинных слоев металла в оксид. Толщина оксидной пленки растет пропорционально времени оксидирования, но пленка при этом становится более пористой. Большая пористость нежелательна, так как может стать причиной возникновения брака в формном процессе (неполное удаление копировального слоя при проявлении копий, тенение форм в процессе печатания).

Наполнение оксидной пленки предусматривает снижение пористости пленки, уменьшение ее активности и улучшение гидрофильных свойств поверхности. Для наполнения оксидной пленки используют горячую воду, пар или раствор жидкого стекла.

После каждой из рассмотренных стадий подготовки подложки проводится тщательная промывка. Таким образом, можно сказать, что электрохимическое зернение ответственно за микрогеометрию (шероховатость поверхности); анодное оксидирование - за износостойкость и адсорбционную активность; наполнение - за гидрофильные свойства поверхности и полноту удаления копировального слоя при проявлении копий.

Нанесение копировального слоя: необходимо для создания на поверхности подложки гидрофобного слоя, выполняющего в дальнейшем роль печатающих элементов. Копировальный слой представляет собой тонкую (2 мкм) полимерную воздушно-сухую светочувствительную пленку, растворимость которой в соответствующем растворителе либо снижается, либо возрастает в результате действия лучистой энергии в диапазоне от 250 до 460 нм. В соответствии с этим различают негативные (растворимость снижается) и позитивные (растворимость возрастает) копировальные слои.

К копировальным слоям предъявляются следующие требования:

  • способность светочувствительной композиции при нанесении на подложку образовывать беспористые, тонкие полимерные пленки (1,5-2,5 мкм);
  • хорошая адгезия к подложке;
  • изменение растворимости пленки в соответствующем растворителе в результате действия УФ-излучения;
  • достаточная разрешающая способность слоя;
  • высокая избирательность проявления, то есть отсутствие растворимости или незначительное растворение тех участков слоя, которые должны остаться на подложке.

В качестве копировальных растворов для изготовления предварительно очувствленных монометаллических пластин чаще всего используются растворы на основе светочувствительных ортонафтохинондиазидов (ОНХД).

Копировальные слои на основе ОНХД работают позитивно, то есть воздействие лучистой энергии приводит к увеличению растворимости экспонированных участков слоя. В состав копировального слоя входят: пленкообразующий полимер, ОНХД, органический растворитель, красители, целевые добавки (для обеспечения физико-механических свойств и сохранности слоя).

ОНХД даже относительно сложного строения не образуют полимерной пленки, поэтому их вводят в полимер или химически сшивают с макромолекулами полимера. Широкое применение ОНХД в составе копировальных слоев объясняется их достоинствами: отсутствием темнового дубления, достаточной светочувствительности, устойчивости к агрессивным воздействиям, разрешающей способности, хорошей адгезии к металлам. Основные типы монометаллических пластин, производимых итальянской фирмой Lastra и представленных на российском рынке, - это пластины с позитивными копировальными слоями (Futura Oro, Futura 101).

Известно, что при использовании офсетных пластин c негативным копировальным слоем можно получить более высокое разрешение изображения, что связано со свойствами негативных копировальных слоев и технологическими особенностями изготовления печатных форм на пластинах с негативными копировальными слоями. Фирма Lastra поставляет на российский рынок пластины подобного типа. Примером являются пластины Nitio San, Nitio Dev.

Смачивание поверхности формных основ копировальными растворами является предпосылкой создания прочной адгезионной связи между копировальным слоем и поверхностью формной пластины. Сама же адгезия определяется химическим строением светочувствительных и пленкообразующих компонентов копировальных растворов, а также условиями нанесения и сушки копировальных слоев. Свойства копировальных слоев определяются не только составом светочувствительных композиций, но и способом нанесения их на формные подложки, условиями формирования пленок.

Для создания копировального слоя могут использоваться различные способы его нанесения. Возможности способов различны, поэтому способ нанесения копировального слоя является «секретом фирмы». При этом известно, что он должен обеспечивать равномерность нанесения достаточно тонкого слоя, гарантировать защиту от влияния статического электричества и предотвратить распыление в воздух. Последнее дает возможность изготовления печатных форм более быстро, является экологически безвредным, не требует жесткого соблюдения режимов температуры и влажности. Современные способы нанесения копировальных слоев ориентированы на полив из растворов.

У современных офсетных монометаллических пластин светочувствительный слой имеет поверхностное матирование, способствующее быстрому достижению глубокого вакуума между поверхностью пластины и монтажом фотоформ во время копирования. Это покрытие создается различными способами. Фирма Lastra предлагает получение внешнего матированного покрытия путем создания на поверхности копировального слоя дополнительного слоя на базе водорастворимых смол с равноотстоящими друг от друга каплями.

Сушка: если нанесение копировального слоя на подложку - первая стадия формирования пленки копировального слоя, то вторая заключается в высушивании слоя, в процессе которого создается фундамент всех необходимых технологических свойств слоя: адгезии к подложке, светочувствительности, химической стойкости, механической прочности и тиражестойкости, стабильности показателей при хранении пластин. Процесс сушки включает в себя следующие стадии: перераспределение растворителя в копировальном слое, его испарение и окончательное высыхание.

На сегодняшний день достаточно большое количество фирм-производителей предлагают разнообразный ассортимент монометаллических пластин, предназначенных для использования их в процессе получения форм офсетной печати. Все поставляемые пластины должны удовлетворять стандартам отрасли.

Во ВНИИ полиграфии были разработаны технические условия - ОСТ 29.128-96, позволяющие оценить технологические возможности всех используемых типов монометаллических пластин. В ОСТ 29.128-96 содержатся требования, предъявляемые к последовательности технологических операций, к порядку передачи материалов и к самим материалам, к подготовке и использованию оборудования.

На основе ОСТ 29.128-96 были написаны технологические инструкции для изготовления печатных форм на предварительно очувствлённых алюминиевых пластинах способом позитивного копирования. В инструкциях содержатся нормы по изготовлению печатных форм, требования, предъявляемые к качеству форм, а, кроме того, в инструкциях описываются методы контроля процесса изготовления печатных форм, цеховые условия и требования безопасности.

Более подробно рассмотрим основные требования, предъявляемые к монометаллическим пластинам. Входной контроль пластин осуществляется в соответствии с требованиями ОСТ 29.128-96 «Пластины монометаллические, офсетные, предварительно очувствленные. Общие технические условия». Данные для входного контроля пластин представлены в .

Как правило, все виды пластин, используемых в производстве печатных форм, соответствуют предъявляемым требованиям, однако качество печатных форм, получаемых на этих пластинах, в условиях конкретного формного процесса может быть различным. Из этого можно заключить, что процесс изготовления печатных форм, прежде всего, зависит от режимов изготовления форм, а также от того, каким образом реагируют различные виды пластин на изменение этих режимов. Данный процесс позволяют контролировать шкалы оперативного контроля, к которым относят растровый тест-объект UGRA (), шкалу KALLE () и др.

Шероховатость Данные для входного контроля пластин

Наименование свойства

Номинальное значение

Предельное отклонение

поверхности пластины, R a , мкм

Толщина анодной пленки, мкм - для пластин марки УПА - для электрохимически зерненых пластин

0,04-0,1 0,8-2,0

Толщина светочувствительного слоя, мкм

Светочувствительность (время экспонирования), мин

не более 5

Избирательность проявления, W относит. единиц

не менее 20

Разрешающая способность, мкм

не более 12

Градационная передача, % Размер растровой точки: в светах в тенях


Рис. 2. Шкала UGRA-Offset 1982 и обозначение ее фрагментов

Шкала UGRA–82 представляет собой 5 областей:

1. содержит полутоновую шкалу, состоящую из 13 полей, за каждым из которых оптическая плотность меняется на величину равную 0,15 Б от min = 0,15Б до max = 1,95Б;

2. содержит окружности с микроштрихами от 4 до 70 мкм в позитивном и негативном исполнении;

3. состоит из элементов растрового изображения полутонов с различной площадью растровой точки Sотн,% от 10 до 100% с шагом 10% и линиатурой 60 лин/см (150 точек на дюйм);

4. содержит миры скольжения и двоения для контроля печатных процессов;

5. содержит элементы растрового изображения в светах (6 полей с min размером растровой точки 0,5 и max 5%) и глубоких тенях изображения (6 полей с min размером растровой точки 95 и max 99,5%).


Рис. 3 Растровая шкала KALLE
Тест - объект KALLE содержит 12 растровых полей с различной площадью растровой точки с линиатурой изображения 60 лин./см (150 точек на дюйм) и 12 растровых полей с линиатурой изображения 120 лин./см (300 точек на дюйм)


Растровая шкала должна быть воспроизведена полностью от 10 до 95% точки; на растровых полях высоких светов и высоких теней могут отсутствовать точки 0,5; 1; 99,5; 99 %, точки 2 и 98% должны быть воспроизведены; на шкале концентрических окружностей должны быть воспроизведены позитивные штрихи, начиная с 12 мкм, что соответствует разрешающей способности 300 лин./см. С помощью шкалы UGRA-82 возможно определить оптимальное время экспонирования, воспроизведение минимальных по размеру штрихов на печатной форме (определение выделяющей способности), воспроизведение растровых элементов в светах и тенях, градационная передача изображения, контраст изображения.

Для оценки градационной передачи пластин при копировании на печатную форму изображения с различной линиатурой использовалась шкала KALLE. При соблюдении всех технологических режимов и использовании шкал оперативного контроля должны получаться качественные печатные формы. На качественной печатной форме:

печатающие элементы:

  • должны соответствовать темным участкам диапозитива, и изменение размеров растровой точки не должно превышать 6,6%;
  • должны устойчиво воспроизводить растровую точку в высоких светах изображения (2% точка шкалы UGRA-Ofset-1982 фрагмент № 5);
  • обладают высокой гидрофобностью и при контрольном нанесении краски легко воспринимают ее по всей поверхности, в том числе в высоких светах;
  • обладают химической стойкостью к любым обрабатывающим материалам офсетной печати и обеспечивают тиражестойкость от 80 до 200 тыс. оттисков.
  • пробельные элементы:
  • абсолютно чистые по всей поверхности, в том числе не имеют следов от краев диапозитивов и липкой ленты;
  • равномерны по цвету по всей поверхности, не имеют светлых пятен от разрушения анодного слоя пластин;
  • обладают устойчивой гидрофильностью и при контрольном нанесении краски на форму не воспринимают ее по всей поверхности, а также в глубоких тенях изображения (чистые пробелы на растровом поле 97% шкалы UGRA-82);
  • не «тенят» в процессе тиражной печати и обеспечивают тиражестойкость 80-200 тыс. оттисков.

При неточном соблюдении технологии или неудачном выборе оборудования на формах могут возникнуть дефекты (мягкая форма, контрастная форма, тенение формы, снижение тиражестойкости формы, потеря мелких деталей изображения на форме, наличие лишних печатающих элементов на форме, непрокопировка изображения и др.), которые, естественно, появятся и на оттисках.

Более подробно рассмотрим дефект непрокопировки изображения на печатной форме. Непрокопировка может возникнуть по самым различным причинам. Одна из самых серьезных - низкое качество фотоформ. Далее хотелось бы остановиться на возникновении дефекта непрокопировки при использовании качественных фотоформ.

Если свет от источника копировальной рамы попадает под непрозрачные печатающие элементы фотоформы, то в процессе проявки офсетной копии мелкие элементы могут измениться в размерах или совсем исчезнуть. Это может произойти в следующих случаях:

  • неплотный контакт формной пластины и диапозитивом;
  • большой процент рассеянного света в световом потоке экспонирующего устройства;
  • при длительном времени экспонирования (основная экспозиция и экспонирование под рассеивающей пленкой).

Далее хотелось бы более подробно остановиться на возможностях пластин, которые достаточно хорошо известны на рынке российских полиграфических материалов. Это монометаллические позитивные пластины Futura Oro итальянской фирмы Lastra. Компания «РеаЛайн» является официальным поставщиком расходных материалов, производимых фирмой Lastra, поэтому на базе ВНИИ полиграфии и МГУП были проведены испытания по оценке основных свойств этих пластин. Вниманию читателей ниже будут представлены некоторые результаты этих исследований.

  • Основной задачей являлось изучение репродукционно-графических свойств пластин с использованием шкал оперативного контроля UGRA-82 и KALLE (определение разрешающей способности, графической точности воспроизведения штриховых элементов, оценка градационной передачи при воспроизведении изображения с различной линиатурой).

Все представленные показатели определялись при оптимальных режимах изготовления печатных форм, а именно: согласно рекомендациям фирмы Lastra время экспонирования выбиралось таким, чтобы при проявлении на печатной форме были чистыми (не содержащими копировальный слой) первые 3 поля полутоновой шкалы фрагмента №1 шкалы UGRA-1982, а на поле 4 была вуаль. Также были изготовлены печатные формы при заниженном и завышенном времени экспонирования. Режим проявления оставался постоянным.

При оптимальном режиме изготовления печатной формы пластины Futura Oro оценка разрешающей способности показала, что пластины устойчиво воспроизводят растровую точку в диапазоне 2-98%, графическая точность соответствует воспроизведению штрихового элемента размером 10-12 мкм.

Для оценки градационной передачи были измерены относительные площади растровых точек на печатных формах при помощи денситометра фирмы Gretag Macbeth D19C (по шкале KALLE) и построены графические зависимости Sотн%, печ. ф.=f(Sотн%, ф. ф) - градационные кривые при различных режимах экспонирования при воспроизведении изображения с линиатурой 60 лин./см, которые представлены на .

Судя по градационным кривым, при изменении режимов изготовления наблюдаются незначительные градационные искажения, что очень важно, так как это говорит о том, что пластины Futura Oro не критичны к изменению режимов. Таким образом, если потребуется увеличить разрешающую способность за счет снижения времени экспонирования, то сделать это будет возможно, не теряя при этом качество воспроизведения изображения в целом.


Аналогичные зависимости прослеживаются и при контроле воспроизведения изображения с большей линиатурой L=120 лин./см. Градационные характеристики представлены на .

Анализируя градационные кривые при воспроизведении изображения с различной линиатурой, можно отметить, что при увеличении времени экспонирования наблюдаются 1-2% искажения в светах, но во всем остальном диапазоне градаций градационные кривые близки к идеальным. Такие результаты характеризуют пластины Futura Oro как материалы, которые пригодны для воспроизведения оригиналов различного типа с различной линиатурой.

На сегодняшний день большинство типов офсетных монометаллических пластин, представленных на рынке полиграфических материалов, характеризуются достаточно высокими показателями качества: высокой светочувствительностью копировальных слоев пластин, высокими показателями по тиражестойкости пластин, технологичными свойствами печатных и пробельных элементов, разрешающей способностью и графической точностью воспроизведения штриховых элементов. Это связано с тем, что сегодня ко всем видам полиграфической продукции применяются достаточно высокие требования. Поэтому производители офсетных монометаллических пластин стараются постоянно совершенствовать их свойства. Можно выделить основные направления, в которых в настоящее время ведется работа:

  • увеличение светочувствительности пластин, позволяющее уменьшить время их экспонирования;
  • совершенствование технологии зернения пластин, позволяющее улучшить свойства пробельных элементов и снизить время для достижения баланса краска-вода;
  • улучшение репродукционно-графических свойств офсетных пластин, позволяющее воспроизводить высоколиниатурное изображение;
  • увеличение тиражестойкости пластин.

На сегодняшний день компания Lastra предлагает новый тип позитивных пластин Futura 101. Чувствительность копировального слоя этих пластин больше, чем у пластин Futura Oro, и, как следствие, время экспонирования при изготовлении формы снижено на 15-20%.

примером совершенствования технологии зернения, может являться технология многоуровневого зернения Multigrain фирмы Fuji, позволяющая получать шероховатую поверхность с различной величиной зернения офсетной пластины. Это, во-первых, позволяет добиться короткого времени достижения вакуума между фотоформой и пластиной; во-вторых, улучшить свойства пробельных элементов за счет лучшего удержания воды на их поверхности; в-третьих, снизить время установления баланса краска-вода.

Снижение времени вакуумирования при экспонировании пластин позволяет получить внешнее микропигментированное покрытие пластин. Именно такое покрытие на основе водорастворимых смол использует при производстве своих офсетных пластин фирма Lastra.

Внешний микропигментный слой также может служить для улучшения репродукционно-графических свойств пластин. Поскольку одной из причин уменьшения разрешающей способности пластин является светорассеяние, то его уменьшение за счет микропигментного слоя и обеспечивает повышение качества воспроизведения.

Увеличение тиражестойкости пластин - одно из важных направлений в совершенствовании технологии их изготовления. Фирмами-производителями разрабатываются пластины с различными показателями тиражестойкости для использования их при печати для различных тиражей. Примером могут служить пластины Agfa Ozasol (Германия) различного наименования:

  • P5S - для печати средних и больших тиражей, тиражестойкость 100-120 тыс. отт.
  • Р10 - для высококачественной печати малых тиражей, тиражестойкость до 80 тыс. отт.
  • P20S - для печати малых и средних тиражей, тиражестойкость 80100 тыс. отт.
  • Р51 - для средних или больших тиражей, тиражестойкость 150-200 тыс. отт.
  • P71 - для печати больших тиражей без дополнительного обжига.

При необходимости получения полиграфической продукции с высокими тиражами существует возможность использования формных пластин, предназначенных для термообработки.

Пластины фирмы Lastra Futura Oro в соответствии с указаниями производителя, возможно, использовать для термообработки. В качестве «экрана» используется защитное средство для термической обработки Termogomma LTO 240. Термическая обработка пластин Futura Oro позволяет увеличить тиражеустойчивость печатных форм до 1000 тыс. оттисков.

Современное офсетное производство характеризуется интенсивным использованием электронной техники на всех стадиях подготовки издания к печати и проведения печатного процесса, а также достаточно широким внедрением элементов стандартизации и оптимизации.

Значительные изменения претерпело в последние десятилетия офсетное печатное оборудование – это многокрасочные машины, построенные по модульному принципу, обладающие широкими возможностями. К их важнейшим достоинствам относятся:

  • возможности изменения формата и красочности печатания;
  • широкая номенклатура запечатываемых материалов (от легких бумаг с толщиной до 0,05 мм и массой менее 40 г/м 2 до картона толщиной до 1,0 мм и массой до 1000 г/м 2);
  • достаточно высокая рабочая скорость (до 10 – 17 тыс. оттисков/час для листовых машин и более 45 тыс. оттисков/час для рулонных);
  • сравнительно небольшая величина отходов бумаги и высокая экологичность.

Хотя технические принципы офсетной печати остаются неизменными, используемое печатное оборудование можно разделить на три основные категории: малоформатное, листовое и рулонное.


4. Трафаретная печать.


Изготовление трафаретных печатных форм.

Трафаретная печать – способ печати, при котором оттиск получают путем

продавливания краски с помощью эластичного ракеля через печатную форму на бумагу или др. материал.

Форма для трафаретной печати представляет собой сетку из натурального шелка (шелкотрафаретная печать), синтетической ткани или металла, натянутую на специальную раму. Печатающие элементы формы представляют собой открытые участки сетки, пробельные элементы перекрыты задубленным или полимеризованным копировальным слоем. Для трафаретной печати используются вырезные, рисованные, печатные формы, изготовляемые вручную, о также фотомеханические формы.

Существуют три способа изготовления фотомеханических печатных форм: прямой, косвенный и комбинированный. При прямом способе диапозитив копируют непосредственно на сетку, покрытую копировальным слоем. Под действием света копировальный слой под прозрачными участками диапозитива задубливается (или полимеризуется), а на участках, не подвергшихся действию света, удаляется в процессе проявления.

При косвенном способе копию получают на временной подложке – синтетической пленке, а затем переносят на сетку.

В «Ризографе» печатная форма изготавливается путем перфорирования формного материала термоголовкой.

Комбинированный способ сочетает элементы прямого и косвенного способов.

Машины трафаретной печати могут использоваться там, где применение

оборудования других способов печати на не рационально, например, при

печатании на жестких, изогнутых поверхностях, для отделки переплетных

крышек и выпуска продукции с толстыми слоями красок.


5.Флексографский способ.


Флексография - это разновидность высокой печати, использующая эластичные (гибкие) печатные формы и низковязкую краску. Флексографские машины изначально разрабатывались для печати на упаковочных материалах и практически не имеют ограничений по типу запечатываемого материала. Как правило, материал выбирается, исходя только из технологического процесса, который необходим для создания упаковки или иной продукции. Возможно использование бумаги, любого вида картона (мелованный, со специальным покрытием, ламинированный и т. д.), самоклеющихся материалов, металлической фольги, пленочных полимерных материалов любого типа и толщины (современные производители используют специальные средства для печати на ультратонких, чувствительных к нагреву пленках, как например уникальная система «холодное зеркало» фирмы Mark Andy). Кроме того, можно печатать на нестандартных материалах с грубой фактурой, таких, например, как ткань.

Для флексографской печати используются гибкие фотополимерные формы. Именно от них флексография и получила свое название. Такие формы имеют целый ряд неоспоримых преимуществ по сравнению с формами, используемыми в других типах печати. Они сочетают в себе простоту изготовления (процесс, несколько похожий на изготовление офсетной формы) с высокой тиражестойкостью, присущей формам при высокой и глубокой печати. Тиражестойкость фотополимерной формы превышает тиражестойкость обычной монометаллической офсетной формы на порядок и составляет от 1 до 2,5 млн. оттисков.

Эластичность формы позволяет ей работать и как декель, что исключает

процесс приправки, а так же печатать на материалах с такой грубой фактурой, на которой печать офсетным способом вообще невозможна.


Кроме присущей флексографии гибкости в выборе носителей еще одним ее

преимуществом является цена. Фотополимерные флексографские формы гораздо дешевле, чем металлические формы для глубокой печати, и это только одно из слагаемых относительной дешевизны флексографической печати. Поскольку флексографские машины часто комбинируются в одну линейку с устройствами для ламинирования, высечки, фальцовки и склейки, они оказываются экономичнее других печатных машин, с раздельным технологическим процессом.

Флексографская машина в типичной конфигурации может печатать на листах

пластика, высекать в них отверстия, складывать их в пакет, а затем

склеивать его - и все это в одном технологическом цикле. По этой причине

печатников, использующих флексопечать, часто называют изготовителями

упаковки.

Особенностью флексографии является также ее способность оперировать формами различного размера, что позволяет оптимизировать использование материалов, в то время как фиксированные размеры офсетных форм часто приводят к повышенному проценту отходов. А возможность флексографских машин работать с водными красками, а не с красками на основе растительных масел, принятыми для офсетной литографии, часто является решающим фактором при выборе способа печати на упаковочных материалах для пищевых продуктов. Обычно водные краски оказываются предпочтительнее по экологическим соображениям.

Но часто для изготовления безопасной упаковки для продуктов использование красок на водной основе регламентируется правительственными предписаниями.

полиграфической ярмарки DRUPA’82 фирмы DuPont, Zecher и Windmueller & Huelscher впервые отпечатали иллюстрационное изображение флексографским способом.

6.Заключение.

На данный момент самое большее распространение получил офсетный способ печати. Менее распространена флексография. Уже редко встречаеться высокая печать прародительница флексографии. В узком спектре рынка полиграф услуг расположена трафаретная печать. И как экзотика в Самаре смориться глубокая, представленная в нашем городе всего лишь одной типографией. Также много разновидностей шелкографии и единичные станки тампопечати и сухого офсета. Поэтому в моей контрольной рассказывается лишь о самых распространённых способах печати и способах изготовления к ним печатных форм.


7. Литература:


1. В.И.Шеберстов. «Технология изготовления печатных форм». М.: Книга. 1990.

2. ОСТ 29.128-96. Пластины монометаллические, офсетные предварительно очувствленные. Общие технические условия.

3. Справочник к продуктам фирмы Lastra. Манербио, 1996.

4. Технология изготовления печатных форм. Шеберстов В.И. – М.: Книга, 1990. – 224 с.

5. Технология аналоговых цветопробных систем. Match Print Imation // Полиграфия. – 1997. – №5, 34 с.

6. Технология полиграфического производства. Изготовление печатных форм./ Волкова Л.А. – М.: Книга, 1986. – 368 с.

7. Грибков А.В. Формное оборудование. – М.: Книга, 1988. – 320 с.

8. Спихнулин Н.И. Формные и печатные процессы. – М.: Книга, 1989. – 360 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.