Новые технологии светодиодного освещения. Новые технологии освещения: вперед в будущее. LED SlimStyle: тоньше - значит лучше


Компании Infineon, Intel и eluminocity анонсируют совместный проект по созданию безопасных городских улиц, объединенных в глобальную сеть .

С ростом численности населения крупных городов органы государственной власти в разных странах мира ищут способы сделать города, их инфраструктуру и энергетические системы более интеллектуальными, безопасными и энергоэффективными. Наряду с этим подключение транспортных средств к глобальной сети предоставляет городским службам больше возможностей взаимодействия с водителями для комфортного и эффективного управления транспортными потоками. Однако, по мере того как все большее число систем управления переходит к использованию облачных технологий, формируя тем самым Интернет вещей (IoT), появляется больше возможностей для несанкционированного доступа к конфиденциальным данным.

В данной статье приведен обзор некоторых фундаментальных технологий, созданных в сотрудничестве компаниями Infineon, eluminocity и Intel , которые позволяют сделать города будущего более интеллектуальными, а также – инновационных решений для систем освещения, которые могут стать важной составной частью умных городов, объединенных в глобальную сеть.

Ускорение процессов урбанизации и доступ к новым технологиям повышает требования потребителей к тому, насколько их жизнь будет комфортной в ближайшем будущем. До недавнего времени основное внимание уделялось совершенствованию мобильных устройств и связанных с ними продуктов, однако в настоящее время становится очевидным, что улучшение инфраструктуры играет важную роль в технологической эволюции мира, в котором мы живем. Разработчики городской инфраструктуры сталкиваются со все более сложными проблемами и требованиями, которые зачастую противоречат друг другу. С одной стороны они быстро внедряют новые технологии, чтобы добавить больше функциональности атрибутам повседневной жизни, например, обычному уличному освещению, а с другой – пытаются свести к минимуму потребление энергии ввиду постоянного роста стоимости энергоносителей.

В новом, более совершенном, мире уличный фонарь – это уже не просто источник света, а многофункциональный коммуникационный портал, который является основой интеллектуальной городской инфраструктуры. Для того чтобы обеспечить необходимую функциональность и возможность доступа к сетевым ресурсам, разработчики систем освещения используют технологии сотовой связи, разнообразные типы датчиков, – как активных, так и пассивных, – а также современные решения в области защиты информации.

Радиолокатор, работающий в диапазоне 24 ГГц

Радиолокационный способ обнаружения объектов основан на использовании отраженных электромагнитных волн, посредством которых можно определить расстояние до объекта, угол и скорость его движения. Типичные радиолокационные системы (радары) включают в себя передатчик, генерирующий электромагнитные импульсы или непрерывное излучение в радиочастотном или микроволновом диапазоне частот, раздельные передающую и приемную антенны и приемник, осуществляющий прием и обработку сигналов.

Импульсный радар измеряет расстояние до неподвижных или движущихся объектов, генерируя короткий мощный импульс и принимая отклик, отраженный от объекта. Время между посылаемым импульсом и принимаемым откликом прямо пропорционально расстоянию от радиолокационной системы до объекта.

Радары с непрерывным излучением постоянно генерируют электромагнитные волны с частотной модуляцией, реализованной одним из двух способов (рисунок 1). Радар с непрерывным частотно-модулированным излучением (FMCW) способен обнаруживать как стационарные, так и движущиеся объекты, передавая сигнал с линейной частотной модуляцией, который смешивается в приемнике с принятым сигналом. Низкочастотный выходной сигнал приемника содержит информацию о расстоянии до объекта и его скорости. Модуляция скачкообразным изменением частоты, называемая также частотной манипуляцией (FSK), может использоваться для определения расстояния только для движущихся объектов. При данном способе модуляции передатчик последовательно посылает сигналы на двух разных частотах, и расстояние определяется по допплеровскому сдвигу фаз принятых сигналов.

Поскольку обнаружение объектов становится все более востребованным для интеллектуальных систем и устройств, радиолокационная техника диапазона 24 ГГц применяется в различных приложениях Интернета вещей, включая мультикоптеры/дроны, интеллектуальные дверные замки, системы бытовой и производственной автоматизации, измерители скорости, робототехнику и др.

Интеллектуальное уличное освещение

Рис. 2. В «умных городах» будущего интеллектуальная система уличного освещения является лишь одной из функций интеллектуальных концентраторов

Анонсированный недавно совместный проект компаний Infineon, eluminocity и Intel направлен на создание умных городов будущего, объединенных в глобальную сеть. Соединив свои ноу-хау и передовые технологии, три компании разработали усовершенствованное высокоэффективное светодиодное уличное освещение, которое включает в себя также прецизионные датчики и защищенную систему передачи данных. Совместный проект по созданию системы освещения умных городов основан на уличных светильниках компании eluminocity, которые являются также сетевыми концентраторами для интеллектуальных приложений (рисунок 2). Электронные системы базируются на технологиях Infineon и включают в себя радар диапазона 24 ГГц, силовые полупроводниковые приборы (П/П), микроконтроллеры (МК) серии XMC ™ и высокоэффективные устройства защиты информации серии OPTIGA ™ . Технология Intel позволяет подключаться к сети посредством модема с малым энергопотреблением и большой зоной покрытия, поддерживающего работу с сетями сотовой связи, которые используют стандарты LTE Cat.1, LTE Cat.M1, Cat.NM1, LTE-NB и 5G-IoT.

В сочетании с технологией OPTIGA™ компании Infineon сотовая связь, основанная на стандартных протоколах, представляет собой открытую систему, которая является масштабируемой и полностью независимой от существующей инфраструктуры, и обеспечивает при этом высокий уровень защиты информации.

Рис. 3. Внешний вид интеллектуального уличного светильника eluminocity

В этом случае оператору систем уличного освещения (как правило – органу государственного управления) необходимо всего лишь подключить концентраторы уличного освещения к уже имеющейся инфраструктуре.

В дополнение к тому, что уличные светильники, выполненные на микросхемах управления питанием и силовых ключах Infineon, сами по себе обладают высокой энергоэффективностью, применение радара диапазона 24 ГГц позволяет обнаруживать присутствие объектов и увеличивать яркость света только там, где это необходимо, что обеспечивает более эффективное решение по сравнению с большинством постоянно включенных светильников.

Однако интеллектуальные светильники eluminocity – это не только системы освещения с высокой энергоэффективностью (рисунок 3). Встроенные в них бесконтактные детекторы позволяют обнаруживать близлежащие свободные парковочные места, что в сочетании с сетевыми технологиями Intel предоставляет водителям, находящимся поблизости, информацию о доступном количестве парковочных мест.

Данная функция характеризует светильники eluminocity как один из элементов полнофункциональной системы интеллектуального управления транспортным трафиком.

Благодаря мониторингу локальных условий дорожного движения специалисты по городскому планированию и владельцы окрестных магазинов получают полезные сведения, позволяющие ориентировать водителей транспортных средств в зонах их скопления либо посредством сигналов или знаков дорожного движения, либо путем предоставления актуальной на данный момент информации бортовым спутниковым навигационным системам.

Современные интеллектуальные уличные светильники могут также оснащаться встроенными зарядными устройствами для электрических транспортных средств.

Поскольку такие зарядные устройства не требуют выделения под них дополнительных площадей, это является ключевым фактором, способствующим успешному развитию городского электротранспорта.

Обзор технологий интеллектуального освещения

Обеспечение безопасности данных в концентраторах OPTIGA™

Большие возможности по формированию сетевой структуры интеллектуальных городов на основе концентраторов уличного освещения и преимущества, реализуемые посредством открытого доступа к этой структуре со стороны пользователей, создают потенциальную проблему уязвимости сети. Для устранения угрозы несанкционированного доступа и обеспечения безопасности сетей, на которых базируются умные города, в концентраторах уличного освещения реализована технология надежной защиты информации с использованием устройств семейства OPTIGA™ производства компании Infineon. Встроенные функции безопасности OPTIGA™ включают в себя проверку целостности системы и данных, аутентификацию и защищенные от несанкционированного доступа передачу и хранение данных, а также безопасное обновление программного обеспечения.

В семейство устройств OPTIGA™ входит современный 16-разрядный контроллер с функцией защиты данных, который можно легко интегрировать в широкую номенклатуру устройств Интернета вещей. Для обеспечения полной гибкости, необходимой системным разработчикам, семейство устройств OPTIGA™ поддерживает работу с операционными системами Microsoft Windows, Linux и их производными, а также предоставляет интеграционную поддержку для фирменных операционных систем. Семейство OPTIGA™ содержит также криптопроцессор TPM с поддержкой последней версии стандарта TPM 2.0 консорциума TCG, что позволяет разработчику использовать наиболее современные протоколы безопасности.

Обнаружение приближения объекта в интеллектуальных концентраторах уличного освещения реализовано на основе промышленного радара BGT24LTR11 диапазона 24 ГГц (рисунок 4), имеющего минимальный размер корпуса в данном классе устройств и позволяющего измерять расстояние до объекта и его скорость с использованием эффекта Доплера. Дополнительные каналы приема позволяют также определять посредством фазового детектирования сигналов с разных антенн угол и направление движения объекта.

Диапазон 24 ГГц обеспечивает высокую точность обнаружения объектов: до 50 м для пешеходов и до 150 м для транспортных средств. Кроме того, радиолокационные способы обнаружения обладают значительно большей чувствительностью по сравнению с пассивными инфракрасными (ИК) датчиками и способны, например, обнаруживать дыхательное колебание в пределах нескольких миллиметров. Можно с уверенностью утверждать, что радары в конечном итоге заменят пассивные ИК-датчики во многих приложениях. Диапазон 24 ГГц пригоден для работы при различных атмосферных воздействиях, включая существенные изменения температуры, высокий уровень влажности и повышенную запыленность воздуха, что позволяет использовать радары, работающие в данном диапазоне, даже в самых неблагоприятных условиях современных городов.

Разработчикам, которые еще недостаточно хорошо знакомы с радарной технологией диапазона 24 ГГц, компания Infineon предлагает набор демонстрационных плат, например, Sense2GoL . Данная полнофункциональная плата размером 25х25 мм содержит, наряду с радаром BGT24LTR11, специализированные полосковые передающую и приемную антенны, а также 32-битный промышленный МК XMC1302 ARM® Cortex® M0 . Демонстрационная плата радара соединена перфорированной перемычкой с отладочной платой Segger , посредством которой можно осуществлять программирование и оценку функциональных возможностей платы радара.

Комплект поставки демонстрационной платы включает также программное обеспечение детектора движения и программный графический интерфейс пользователя для наблюдения за радиолокационными сигналами, а также руководство пользователя и полный набор схем и файлов печатных плат в формате gerber для ускоренного внедрения разработки в производство.

Возможность подключения дополнительных датчиков

К интеллектуальным концентраторам уличных систем освещения могут быть подключены практически любые датчики: например, датчики газа могут контролировать качество воздуха, а звуковые датчики – распознавать повышенный уровень шума. Конкретные варианты применения датчиков могут включать в себя аудиосопровождение на дороге или обнаружение выстрела из огнестрельного оружия. Датчики освещенности, несмотря на свою простоту, играют важную роль в повышении «интеллекта» уличного освещения: измеряя уровень естественного освещения, они смогут включать уличное освещение во время посмурной погоды. Кроме того, контролируя фактический уровень освещенности, они способны передавать сигнал обратной связи контроллеру для обеспечения нормативного уровня освещенности при любых условиях эксплуатации независимо от выработанного ресурса уличных светильников. При этом данные об износе оборудования могут быть дистанционно переданы техническому персоналу для более качественного планирования регламентных работ и предупреждения преждевременного отказа оборудования.

Механизм восприятия света человеком можно сравнить с компьютерной системой, где глаза выполняют роль датчиков, а мозг-«процессор» обрабатывает полученную информацию и преобразуют ее в доступные для понимания зрительные образы. Как это ни парадоксально звучит, но люди видят не свет как таковой (то есть не электромагнитное излучение), а ощущают цветовую температуру отраженного от предметов светового потока. Именно на этом принципе восприятия базируются новейшие разработки в сфере освещения интерьеров и экстерьеров: ученые создают новые источники света основываясь на том, что мозг человека обрабатывает не первичный, а отраженный световой поток.

Виды освещения интерьеров

Все существующие на сегодняшний день виды освещения интерьеров можно классифицировать следующим образом:

  • общее освещение (мощный источник света освещает все помещение целиком);
  • направленное освещение (источник света направлен на отдельную часть помещения);
  • отраженное освещение (световой поток направлен на отражающую поверхность, например, в потолок).

В зависимости от выбранного варианта применяют те или иные светильники: встроенные или подвесные потолочные, настенные, напольные и так далее.

Разновидности светильников

Светильник есть не что иное, как набор компонентов, смонтированных в одном корпусе. Например, светильники-новинки на светодиодах состоят из собственно источников света (LED-элементов), светотехнической арматуры, корпуса, электропроводки, отражателя и микроэлектроники, - состав может меняться в зависимости от мощности и разновидности устройства. Но главный классификационный признак - источник светового излучения: в зависимости от используемого варианта, светильники подразделяются на светодиодные, люминесцентные и оснащенные лампами накаливания.

«Последнее слово светотехники» - светильники со светодиодными источниками света: на сегодняшний день LED-технологии освещения считаются самыми передовыми и наиболее перспективными.

Причины популярности LED-освещения

Появившись позже других, новинки-светильники на базе светодиодных элементов быстро завоевывают приверженность покупателей. И это вполне логично: потребляя в разы меньше ламп накаливания и люминесцентных ламп, светодиодные светильники в десятки раз долговечнее обычных светотехнических приборов. Однако экономичность - далеко не единственное преимущество светодиодных новинок освещения: LED-приборы создают комфортные для человека условия, поскольку цветовая температура этих источников близка к естественному свету.

Тем не менее, у новинок освещения есть как преимущества, так и недостатки. Например, в низкокачественных светодиодных светильниках наблюдается температурная и токовая деградации, вследствие которых параметры светового потока существенно ухудшаются и светильники выходят из строя до конца спрогнозированного срока службы. Кроме того, светодиодная техника стоит значительно дороже по сравнению с аналогами на люминесцентных или накальных лампах. Одним словом, если ориентироваться на новинки освещения и устанавливать LED-светильники, целесообразнее потратиться на дорогие, но надежные и долговечные устройства.

Light+Building 2012

Современное интерьерное освещение - это многокомпонентная система, в которой новые светильники являются лишь одним из звеньев. Ключевое значение имеют различные устройства управления и контроля, с помощью которых можно организовать систему принципиально нового уровня, вплоть до полной автоматизации.

В этом году во Франкфурте состоялся Международный Форум производителей светотехнического оборудования Light+Building 2012 («Свет + Строительство 2012»), на котором ведущие европейские компании демонстрировали светильники-новинки и различные вспомогательное оборудование.

Новейшие разработки в сфере интерьерного освещения сводятся к решению четырех основных задач:

  • снижению энергопотребления;
  • минимизации размеров и стоимости компонентов систем освещения;
  • внедрению автоматизированного и интеллектуального управления освещением;
  • увеличению количества настраиваемых характеристик.

На форуме было представлено множество новейших устройств, интересных как по дизайну, так и по оптическим параметрам. К сожалению, революционных прорывов в сфере интерьерного освещения гости форума так и не дождались: все новации, по сути, являются усовершенствованием уже существующих приборов; но все же в области минимизации производители добились значительных результатов: компоненты систем освещения, в том числе и светильники-новинки, стали компактнее и красивее, экономнее, ярче и… дешевле.

Среди доступных по цене изделий - всевозможные датчики, предназначенные для автоматизации систем освещения. Например, установив в квартире датчики движения или объема, можно навсегда избавиться от необходимости щелкать выключателями: свет будет включаться в комнатах, где кто-то присутствует, и выключаться там, где никого нет. Существенно подешевели и уменьшились в размерах «очеловеченные» устройства, управляемые голосовыми командами и программно-аппаратными модулями.

Уже в ближайшем будущем на рынке появятся светильники-новинки, совмещающие в себе две функции: освещение и передачу данных. Производители обещают, что со временем эти устройства вытеснят ставший традиционным Wi-Fi. Технологию передачи данных с помощью света видимого спектра называют Visible Light Communication (VLC), а также Li-Fi. В настоящее время эти новинки освещения находятся в стадии испытаний и апробации, но уже вскоре подключиться к интернету через настольную лампу или люстру сможет каждый желающий. Опять же, эти устройства собирают на базе светодиодных элементов.

Преувеличенная дороговизна

Распространено мнение, что внедрение новинок освещения сопряжено со значительными расходами на приобретение и монтаж. Зачастую подобные утверждения далеки от действительности: например, упомянутые выше датчики для автоматизации освещения вполне доступны по ценам. Невелика и стоимость их установки: разница с ценой монтажа обычных электротехнических устройств незначительна.

Что касается светодиодных светильников, действительно - их цена выше обычных светотехнических приборов, но оценивать целесообразность приобретения и дальнейшую эффективность следует в долговременных перспективах, а не руководствуясь сиюминутной выгодой. Объективная картина с учетом перспектив выглядит следующим образом: новинки-светильники на основе LED-технологии экономически выгоднее, удобнее и долговечнее аналогичной по назначению продукции.

Новинки освещения в интерьере

Помимо утилитарных функций, новые разработки в сфере светотехники обладают рядом других не менее важных достоинств. Отдельно стоит упомянуть о стилизации и эстетичности: новая светотехника позволяет реализовать любые , в то время как применение светильников устаревшей конструкции имеет ряд ограничений. Иначе говоря, большинство ярких и оригинальных дизайнерских идей потребует применения светильников-новинок. Разумеется, исключения есть: приверженцы ретро-дизайна или стим-панка могут по-прежнему применять лампы накаливания или стилизованные керосинки.

Внедрение новинок освещения

Чтобы интерьер был по-настоящему красивым и оригинальным, а освещение - комфортным, одной замены старых светильников на новые будет недостаточно. Придется тщательно проработать схему освещения, рассчитать светотехнические параметры и правильно выбрать места для установки осветительных приборов. Это целая наука, которая не терпит суеты и дилетантства. Компания «Столичный мастер » призывает не совершать ошибок, привлекая к выполнению подобных работ случайных или непроверенных исполнителей: горечь разочарования от некачественной работы превысит радость от экономии средств.

Экология потребления.Наука и техника:на подходе четвертый вариант освещения, и технология, названная FIPEL, уже по праву считается первой за последние 30 лет, претендующей на звание новой технологии энергосберегающего освещения. FIPEL зазработал новый источник света профессор физики из университета Фореста Уэйка доктор Дэвид Кэрролл.

На освещение приходится немалая доля энергопотребления во всем мире, например считается, что около 12 процентов от общего потребления электроэнергии приходится именно на освещение. Причина кроется в том, что очень распространенные сегодня традиционные лампочки накаливания (лампочка Ильича у нас, или лампочка Эдисона - в США) съедают очень много энергии, 90 процентов энергии попросту теряется в них в виде тепла.

Главной альтернативой по сей день были лишь компактные люминесцентные лампы и светодиоды, которые потребляя значительно меньше электроэнергии могут давать столько же света, сколько и лампы накаливания. Однако на подходе четвертый вариант освещения, и технология, названная FIPEL, уже по праву считается первой за последние 30 лет, претендующей на звание новой технологии энергосберегающего освещения. FIPEL от Field-induced polymer electroluminescent (электролюминесценция полимера, индуцируемая полем). Разработал новый источник света профессор физики из университета Фореста Уэйка (Северная Королина), доктор Дэвид Кэрролл.

Для объяснения, как работает данная технология, доктор Кэрролл предлагает вспомнить о том, как работает микроволновая печь. Возьмем например картофелину. Если поместить ее в микроволновку, и включить разогрев, то устройство станет действовать на картофелину микроволнами, порождая токи смещения, заставляющие молекулы воды внутри картофелины двигаться взад и вперед, при этом будет происходить нагрев продукта изнутри.

Доктор Кэрролл и его команда разработали особый тип пластика, который при взаимодействии с электрическим током индуцирует подобным образом ток смещения. Но в последнем случае происходит не нагрев пластика, а испускание света.

Новый источник света изготовлен из нескольких слоев очень-очень тонкого пластика, каждый слой при этом в 100000 раз тоньше человеческого волоса. Пластик помещается между двумя электродами, один из которых алюминиевый, а другой - прозрачный и тоже проводящий. Когда ток проходит через устройство, пластик стимулируется и светится.

Основа технологии - легированный моностенными нанотрубками и соединениями иридия, полимер поливинилкарбазол. Достигнутая исследователями яркость превышает 18000 Кд/кв.м, что уже позволяет освещать большие площади, не прибегая к сильно нагревающимся переходам светодиодов, в технологии FIPEL нет такого сильного нагрева, как у других осветительных решений.

К счастью для Дэвида Кэрролла, FIPEL появился вовремя, ведь сейчас как раз такой период, когда новые технологии в освещении востребованы как никогда, поскольку производство традиционных ламп накаливания сворачивается быстрыми темпами.

Производители утверждают, что технология FIPEL не имеет аналогов. Например, компактные люминесцентные лампы используют для освещения на 75 процентов меньше электроэнергии, чем лампы накаливания, а светодиоды и того меньше. Это значит, что КЛЛ дает столько же света, что и 100-ваттная лампа накаливания, потребляя 23 ватта, а светодиодная (LED) – 20 ватт. FIPEL же, в свою очередь, несколько эффективней компактных люминесцентных ламп, и равны по эффективности светодиодным, однако имеют ряд преимуществ.

КЛЛ содержат ртуть, которая токсична, и нужна правильная утилизация. В будущих лампочках технологии FIPEL не будет токсичных или любых других едких химикатов, поскольку это - всего лишь пластик, и утилизировать их можно будет как пластик.

Светодиоды часто имеют голубоватый оттенок, который многим не нравится, да и цветопередача у светодиодов не всегда самая лучшая. FIPEL может иметь любой оттенок, в том числе и желтоватый оттенок солнца, к которому привыкли наши глаза в процессе эволюции, который для нас наиболее комфортен.

Хоть новый источник света и не имеет форму традиционной лампочки, он больше похож по форме на большую панель, тем не менее форма может быть изменена, и тогда светильник легко впишется в любой интерьер, будучи установлен в стандартный патрон. Срок службы FIPEL также сравним со светодиодами - от 25000 до 50000 часов.

Однако, не обошлось и без недостатков. Доктор Кэрролл отмечает, что КПД технологии FIPEL все же чуть меньше, чем можно достичь с применением светодиодов, и светодиоды практически лучшие источники света на данный момент. Несмотря на это, доктор Кэрролл надеется увидеть свое детище на рынке уже к 2017 году. опубликовано

Присоединяйтесь к нам в

Современные крупные сети наружного освещения - это энергоемкие автоматизированные объекты, правильное построение которых в значительной мере определяет эффективность труда и комфорта современной жизни. Важно при этом учитывать ограничения, связанные с рациональным расходованием энергетических ресурсов на обеспечение работы систем освещения, затрат на текущую эксплуатацию осветительного оборудования.

Появление новых технологий в системах наружного (уличного) освещения позволяет получить большой экономический эффект. Практика показывает, что при их внедрении потенциал экономии электроэнергии в большинстве муниципальных систем уличного освещения может составлять более 50%. Рассмотрим основные существующие способы повышения энергоэффективности в наружном освещении.

Реальную экономию электроэнергии дает замена устаревших светильников с лампами ДРЛ на светильники с высокоэнергоэкономичными натриевыми лампами высокого давления. Так, замена светильника с лампой ДРЛ 400 Вт (световой поток 22 клм) на светильник аналогичного назначения с лампой ДНАТ 250 Вт (световой поток 27 клм) позволяет снизить расход электроэнергии на 580 кВт ч в год и повысить уровень освещения на 22%. Соответственно, замена светильника с лампой ДРЛ 250 Вт (световой поток 12,5 клм) на светильник с лампой ДНАТ 150 Вт (14,5 клм) - годовое снижение расхода электроэнергии почти 400 кВт ч и т. д. Поэтому натриевые лампы как источники света применяются все шире для экономичного наружного освещения.

Значительную экономию электроэнергии дает введение так называемого режима «ночной фазы». При работе такой системы управления предусматривается два режима работы линий освещения - вечерний и ночной. При вечернем режиме включены все светильники, а при ночном, когда интенсивность дорожного движения существенно снижается, - часть (1/3 или 2/3) светильников отключаются за счет отключения одной или двух фаз в каждой из отходящих от шкафа управления линий освещения. Но такой способ экономии имеет значительный недостаток - он приводит к повышению контрастности освещения и, как следствие, - к зрительному утомлению и снижению безопасности движения.

Одно из направлений в области энергосбережения - использование специальных регуляторов-стабилизаторов для питания наружного освещения. Помимо регулирования это устройство позволяет выровнять напряжение питания, создать оптимальный режим для работы ламп и продлить их долговечность. Регулирование происходит извне: по команде из диспетчерской, по радиотелефонной связи или по сигналу датчика освещенности. Можно запрограммировать устройство по астрономическому графику или по специальному режиму. Но данные регуляторы не нашли широкое применение в силу того, что большинство существующих линий имеют плачевное состояние и значительную протяженность, что приводит к тому что на конце линии происходит снижение питающего напряжения до уровня когда лампы гаснут. Таким образом, при снижении напряжения на входе линии для организации энергосбережения не произойдет включение значительного количества ламп или они погаснут в процессе работы. Регулирование возможно в пределах не более 5%, что значительно увеличивает срок окупаемости такой системы.

Реальным способом экономии также является четкое соблюдение графика освещения, утвержденного в администрации населенного пункта. Такую задачу решает ввод автоматизированной системы управления (АСУ) наружным освещением. Пункты питания уличного освещения без системы АСУ включаются и выключаются на данный момент с большими разбросами по времени. Это обусловлено тем, что в системах уличного освещения используются четыре приема управления включения/отключения: управление ручное диспетчером по телефонным линиям связи, управление по таймерам, управление по программируемым устройствам, управление по фотореле. Время включения/отключения разбито в течение года на пятидневки. При ручном управлении нетрудно по линиям связи обеспечить точное время включения/отключения. Однако при этом присутствует человеческий фактор, а именно, непрогнозируемое поведение диспетчера, который самовольно может изменить график работы уличного освещения. К тому же стоимость аренды телефонной линии в некоторых городах достигает до 1500 рублей в месяц. Реле времени необходимо каждые 5 дней программировать вручную путем их объездов. При этом присутствуют затраты на автотранспорт, затраты на зарплату и т.д. Объезды, как правило, не всегда выполняются точно по запланированной дате, поэтому потребление электроэнергии значительно возрастает. Как показала практика эксплуатации уличного освещения, возможны изменения графика его включения/выключения администрацией города (праздничные и официальные мероприятия и т.д.). В этом случае часть каскадов, управляемых программируемыми устройствами, изменению не подвергаются. Аналогично предыдущему случаю, фотореле также включается и выключается при задании определенного уровня освещенности (его настройка может занимать не одни сутки) и при изменении графика режима работы, например, времени выключения освещения, после полуночи, невозможно изменить режим работы фотореле. К недостаткам фотореле также можно отнести необходимость очень частой очистки внешнего фотодатчика от грязи и пыли, что значительно увеличивает эксплутационные расходы. Отклонение времени выключения от графика при управлении от фотореле и программируемого устройства может достигать несколько часов в сутки.

Комплексно задачу энергосбережения в наружном освещении с экономией электроэнергии до 40-50% позволяет решить автоматизированная система управления АСУ «Горсвет» производства ФГУП «НПО автоматики им. академика Н.А. Семихатова» г. Екатеринбург. Данная система была впервые введена в эксплуатацию в 2000 г в г. Сургуте и на данный момент успешно эксплуатируется в 24 населенном пункте России и Казахстана (Екатеринбург, Самара, Пермь, Хабаровск, Сургут, Тобольск, Пенза, Караганда и др.).

Сегодня АСУ «Горсвет» это хорошо отлаженная 3-х уровневая самоокупаемая система, с полностью сертифицированным оборудованием и программным обеспечением. Надежность, высокая производительность, разумное соотношение «Цена/качество», система подготовки кадров, сервисное обслуживание и гарантии производителя являются отличительными чертами АСУ «Горсвет».

Главные требования, которые должны ставиться к современной системе управления и уже решенные на настоящее время АСУ «Горсвет» это:

  • Возможность независимого управления отдельной светоточкой (лампой) без изменения
  • существующих линий.
  • Контроль параметров работы светоточки с выдачей диагностической информацией на
  • диспетчерский пункт.
  • Максимальное снижение энергопотребления светоточки, продления срока службы лампы.
  • Возможность оперативного изменения режимов работы пунктов включения с полным контролем их состояния.
  • Экономический эффект от внедрения АСУ «Горсвет» достигается за счет следующих факторов:
  • Введения экономичного «ночного» режима освещения (экономия до 2/3 электроэнергии на освещение);
  • Установки современных пуско-регулирующих аппаратов ЭПРАН 150, 250 Вт (экономия электроэнергии до 50%, двукратное увеличение срока службы ламп);
  • Централизованного управления и контроля технического состояния системы (сокращение эксплуатационных затрат и сокращение численности обслуживающего персонала);
  • Антивандального исполнения исполнительных пунктов и охранной сигнализация (сохранение оборудования и проводов от воровства);
  • Отказ от арендуемых телефонных линий (УТУ-4М) с переходом на GSM, радиосвязь, ВОЛС;
  • Обеспечение автоматического учета потребленной электроэнергии.

При использовании в системе наружного освещения электронного ПРА - ЭПРАН производства ФГУП «НПОА», кроме значительного увеличения ресурса осветительных ламп, появляется возможность автоматического управления потребляемой мощностью (диммирование), яркостью свечения ламп, адресного управления светильниками, проведение диагностики состояния каждого светильника с привязкой к месту его расположения.

К отличительным техническим характеристикам АСУ «Горсвет» можно отнести:

  • Повышение надежности работы оборудования за счет применения блоков бесконтактной коммутации (симистор) силовых линий.
  • Оперативность централизованного или группового управления объектами наружного освещения.
  • Оперативность контроля и выявление обрывов, короткого замыкания в линиях, дистанционный сброс аварии, звуковая и световая сигнализация в случаях возникновения аварийных ситуаций.
  • Возможность архивирования получаемой информации и действий диспетчера, формирование отчетных журналов.
  • Возможность «привязки» контролируемых пунктов к карте города.
  • Модульная структура бесконтактного коммутатора (до 8 модулей).
  • Различные модификации пунктов включения с линейкой коммутируемых токов от 15А до 200А.
  • Возможность резервирования канала связи с диспетчерским пунктом.
  • Наличие технических решений для подключения шкафов АСУ НО других производителей.

Основным и главным элементом в АСУ «Горсвет» является электронный ПРА - ЭПРАН. Его преимущества заключаются в следующем:

  • Уменьшение энергопотребления при сохранении светового потока за счет повышения светоотдачи лампы на повышенной частоте и более высокого КПД (КПД ПРА 65-75%, ЭПРА 95%).
  • Увеличение срока службы ламп благодаря щадящему режиму работы и пуска (пусковой ток лампы отсутствует).
  • Комфортное освещение (отсутствие мерцаний на частоте 100Гц - стробоскопический эффект).
  • Стабильность освещения независимо от колебаний сетевого напряжения (до 160В).
  • Отсутствие мерцаний и вспышек неисправных ламп (импульсы перезажигания).
  • Высокое качество потребляемой энергии (коэффициент мощности 0,98).
  • Снижение эксплутационных расходов (по замене ламп).
  • Полная диагностика работы лампы в процессе ее работы и выдача этой информации по существующим силовым проводам на пункт включения.
  • Возможность диммирования (снижения) мощности лампы в пределах до 50%.

Ориентировочный срок окупаемости АСУ «Горсвет» - 2,5 года.

На данный момент все больше разговоров ведется об использовании светодиодных светильников в наружном освещении. Но в угоду энергосбережения не стоит забывать об их значительных недостатках, не дающих возможность их широкого применения:

  • Низкая полная световая отдача (Светодиоды - с учетом потерь до 64 Лм/Вт, ДНаТ - 140 Лм/Вт).
  • Завышенный паспортный срок службы 50 000 - 100 000 часов (использование в светильнике импульсных блоков питания, конденсаторов со значительно меньшим ресурсом, проведение испытаний только на 10000 часов).
  • Снижение светового потока на 30% со временем.
  • Неравномерность распределения яркости по дорожному покрытию.
  • Низкая надежность драйверов светильников (блоков питания светодиодных модулей), неустойчивость их к перепадам напряжения.
  • Значительная стоимость (светодиодный светильник - 12 000 - 18 000 руб., светильник с Днат и ЭПРАН - до 3500 руб.).
  • Неизученность зрительного восприятия человеком света излучаемого светодиодами (психофизиологические исследования не завершены).

Не стоит также забывать, что задачу энергосбережения следует решать уже в настоящее время, а создание современного светодиодного светильника и последующая замена им уже установленных в огромных количествах в предыдущие пять лет светильников с лампами ДНаТ займет не менее 5-10 лет.

По нашему мнению развитие и внедрение светодиодной техники и электронных ПРА в наружном освещении должно идти параллельно, с учетом конкретных условий их применения.

Соловьев А.В.,
ФГУП НПОА им. академика Н.А.Семихатова,
начальник отдела энергосбережения

Революционное развитие технологий в области наружного освещения позволяет существенно сократить энергопотребление за счет рационального управления, применения инновационных, перспективных энергосберегающих технологии с применением различных типов светильников.

В последние десятилетия проблема энергосбережения в области освещения становится все более актуальной из-за роста вероятности дефицита энергии. Общая доля мирового производства электроэнергии, затрачиваемая на освещение, доходит, по разным источникам до 20—30%, и значительная ее часть приходится на наружное освещение (НО).

В проекте Федерального закона «Об энергосбережении и повышении энергетической эффективности» закладываются основы государственной политики в этой области, при этом большое внимание уделено разработке программ повышения энергетической эффективности в основных отраслях и определение потенциала энергосбережения.

Ведущие компании в области освещения проводят исследования и разработки с целью создания технологий управления энергосбережением в области НО. Реализация таких технологий обеспечивается благодаря применению современных автоматизированных систем управления.

В настоящее время, несмотря на значительный прогресс в области создания энергосберегающих источников света, создалась достаточно стабильная ситуация по использованию современных ламп для наружного освещения. Основные типы источников света, применяемые в этой области, представлены в таблице 1.

Не вдаваясь в подробности сравнения различных типов источников света, необходимо отметить, что революционные сдвиги во внутреннем освещении зданий в настоящее время существенно опережают аналогичные процессы в области наружного освещения. Наиболее распространенным источником света во внутреннем освещении, как для промышленных, так и для бытовых целей, являются газоразрядные люминесцентные лампы низкого давления подключаемые, как правило, через электронный пускорегулирующий аппарат (ЭПРА). Широко распространено управление световыми сценариями, обеспечивающее, в том числе и энергосбережение. Для этого применяются различные проводные (DALI, DSI, 1-10V) и беспроводные интерфейсы.

В наружном освещении применяются натриевые лампы высокого давления (НЛВД), а также, в отдельных случаях, более дорогие металло-галогенные лампы (МГЛ), обладающие спектром, более близким к спектру излучения Солнца. Оба типа ламп, оснащаются электромагнитной, либо электронной пускорегулирующей аппаратурой.

В отдельных случаях находят применение светодиодные светильники, однако, как следует из таблицы, от них в настоящее время не следует ожидать существенной экономии электроэнергии.

Предпосылки внедрения технологий управления энергосбережением.

Внедрение энергосберегающих технологий с каждым годом становится все актуальнее. Известны несколько программ, реализованных в Европе и в Северной Америке и направленных как на увеличение экономичности собственно светильников, так и на обеспечение энергосберегающих способов управления.

Рассмотрим возможности управления энергосбережением в наружном освещении. Типовая для России и для ряда других стран схема установка наружного освещения включает в себя трансформаторную подстанцию, преобразующую трехфазное напряжение 6/10 кВ в трехфазное напряжение 220/380 В, пункт включения освещения (ПВ), осуществляющий управление, контроль и энергоучет в сетях освещения и собственно линии НО. В линиях освещения устанавливаются светильники с лампами высокого давления (как правило, НЛВД и МГЛ). Лампы, подключаются по схеме «звезда», т.е. между одним из фазных и нулевым проводом сети. В «обычном» исполнении для обеспечения нормального режима работы НЛВД (МГЛ) в светильник устанавливается электромагнитный пускорегулирующий аппарат (ЭмПРА). ЭмПРА содержит импульсное зажигающее устройство, обеспечивающее начальный поджиг заряда в лампе, балластный дроссель, согласующий нелинейное сопротивление лампы с сетью 220 В и конденсатор, обеспечивающий приемлемый коэффициент мощности.

Возможности экономии электроэнергии в типовых установках НО минимальны. Традиционный до недавнего времени способ экономии энергопотребления при управлении такими установками, заключался в отключении 1/3 или 2/3 светильников в ночное время (на 4—5 часов), когда снижается активность городского населения и интенсивность дорожного движения. Такое пофазное отключение обеспечивает суммарную экономию электроэнергии до 30% и симметричность загрузки трехфазных линий сетей НО при подключении к одному пункту включения нескольких линий наружного освещения. Однако в настоящее время этот способ не признается целесообразным и не рекомендуется для использования международным комитетом по освещению (МКО), в основном, ввиду негативного влияния на безопасность дорожного движения. В Москве и Санкт-Петербурге уже несколько лет такой ночной режим освещения не используется.

Анализ вариантов энергосбережения

Анализ традиционной схемы НО показывает, что возможными резервами по управлению энергосбережением могут быть:

1. стабилизация напряжения;

2. увеличение КПД ПРА;

3. диммирование.

В первом случае экономия достигается стабилизацией режима работы каждой лампы групповым или индивидуальным способом, компенсируя нестабильность напряжения в сети, которая может доходить до ±15%.

Во втором случае достигнуть экономии возможно за счет использования более эффективных балластов, необходимых для питания НЛВД и МГЛ, а именно ЭПРА. Кроме того, более эффективное использование ламп высокого давления может достигаться за счет повышенной отдачи ламп при питании их от ЭПРА за счет отсутствия эффекта так называемого «перезажигания» в каждый полупериод питающего напряжения.

В третьем случае энергосбережение достигается за счет регулировки режима работы ламп (диммирования) в так называемом «ночном» режиме работы. При этом, целесообразным считается обеспечение глубины регулирования светового потока ламп до 50%, что может обеспечить экономию потребляемой мощности по сравнению с полным режимом освещения до 45% . Общее уменьшение энергопотребления за счет того, что ночной режим составляет около половины от всего времени работы ламп, может достигать 25%. МКО признает предпочтительным такой способ регулирования при снижении интенсивности дорожного движения в ночное время.

Суммарный резерв по снижению энергопотребления в сетях НО, таким образом, приближается к 50%.

Рассмотрим несколько методов управления линиями НО с точки зрения энергосбережения.

1. Традиционная схема трехфазной установки НО с обычными светильниками с ЭмПРА и возможностью уменьшения освещенности за счет отключения в ночное время 1/3 или 2/3 светильников, что не признается целесообразным и поэтому в нашем анализе не рассматривается.

2. Схема с двойным количеством светильников (по два на опору), половина из которых в ночном режиме отключается. Схема довольно проста, однако требует больших затрат при монтаже, а также в эксплуатации.

3. Схема со светильниками с двухрежимными ЭмПРА, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 30% за счет подключения в каждом светильнике в ночном режиме дополнительного балластного дросселя. Исторически это были первые на Европейском рынке энергоэкономичные устройства, обеспечивающие снижение энергопотребления без частичного отключения светильников. Необходимо учитывать, что такая схема существенно снижает надежность ЭмПРА и требует использования дополнительного компенсирующего конденсатора, а также линии управления.

4. Схема с симисторными регуляторами, обеспечивающими фазовое регулирование напряжения линии освещения с изменением формы питающего напряжения. Она обеспечивает уменьшение освещенности в ночном режиме до 50% с экономией суммарного энергопотребления до 35%. При простоте реализации такая схема требует использования дополнительного общего регулируемого компенсатора коэффициента мощности и не нашла широкого применения в НО.

5. Схема со светильниками с ЭПРА, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 40%. Такая концепция впервые позволяла использовать все известные возможности по экономии энергопотребления. Однако, решая проблему управления светильниками, эта схема снижает их надежность и существенно увеличивает их стоимость.

6. Схема с регулятором напряжения в шкафу пункта включения НО, построенная на многообмоточном автотрансформаторе с переключаемыми с помощью симисторов обмотками. Она обеспечивает уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 35%. Схема нашла довольно широкое распространение в Европе, но требует использование дополнительного силового шкафа.

7. Схема с конверторами (или так называемыми «электронными трансформаторами») в шкафу пункта включения НО, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 35%. Реализации такой схемы нам не известны; вероятно, это связано с тем, что весьма затруднительно получить в ней требуемую надежность.

8. Перспективная схема установки НО со светильниками с ЭПРА на линиях постоянного напряжения, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 45%. Являясь модернизацией схемы по п. 5, эта схема имеет повышенную, по сравнению с ней, надежность и меньшую материалоемкость.

9. Установка НО со светодиодными светильниками.

По вариантам 3, 5, 8 и 9, в которых используются регулируемые (диммируемые) светильники, возможны следующие подварианты, связанные с различными способами управления светильниками

а) Управление светильниками по дополнительной командной линии с общепринятыми во внутреннем освещении интерфейсами DALI, DSI, 1-10V или другими проводными интерфейсами.

б) Управление светильниками путем коммутации напряжения (тока) в линии НО.

в) Управление светильниками с помощью PLC или FM-модема.

г) Автономное управление светильниками встроенными таймерами.

Все варианты от 3-го по 9-й представляют собой дополнительный уровень автоматизированной системы управления наружным освещением (АСУНО), а именно групповое и индивидуальное управление регуляторами и светильниками.

Было рассмотрено 20 вариантов и подвариантов управления энергосбережением в линиях НО. Многие из этих вариантов уже реализованы, другие вполне могут быть реализованы, а некоторые, скорее всего, не будут реализованы никогда.

Для обеспечения объективности оценки вариантов нам необходимо учесть все факторы, влияющие на экономическую эффективность внедрения каждой конкретной инновации.

Как уже отмечалось, аналогичная революция в области внутреннего освещения, продолжается уже более 20 лет. На начальной стадии этой революции самые примечательные сдвиги произошли в части широкого применения энергосберегающих светильников с ЛЛ и встроенными ЭПРА, дальнейший прогресс многие исследователи связывают с применением сверхярких светодиодов.

Оценка экономической эффективности

При исследовании возможных вариантов управления была разработана методика оценки эффективности внедрения энергосберегающей технологии в НО.

При проведении оценки эффективности учитывалась разница в показателях между конкретным вариантом и типовым вариантом линии НО. В расчете учитывалось:

Энергопотребление линии НО;

Стоимость силовых и управляющих кабелей;

Стоимость светильников;

Затраты на монтаж линии НО;

Затраты на ремонт и обслуживание линии НО;

Стоимость дополнительного оборудования и материалов.

В оценке были учтены прогнозы по росту тарифов на электроэнергию по РФ на весь расчетный период.

Объектом анализа в проводимом исследовании выступает типовой участок скоростной автодороги, за который принят магистральный отрезок трассы длиной 2 км по 4 полосы в двух направлениях, имеющий 328 светильников, 8,2 км линий освещения и обслуживаемый одной трансформаторной подстанцией и 2-мя шкафами управления НО.

Сравнение вариантов проведено по сроку окупаемости (СО). За период расчета принят промежуток в 6 лет.

Результаты оценки представлены в таблице 3.

Таблица 3. Результаты оценки вариантов энергосберегающих технологий

Варианты технологий

Срок окупаемости, лет

% экономии

Типовая система

Двойное число светильников

2-режимные ЭмПРА

2-режимные ЭмПРА

2-режимные ЭмПРА

2-режимные ЭмПРА

Фазорегурятор

Система с ЭПРА

Система с ЭПРА

Система с ЭПРА

Система с ЭПРА

Переключаемый автотрансформатор

Конвертор

Система с ЭПРА на линиях с постоянным напряжением

Система с ЭПРА на линиях с постоянным напряжением

Система с ЭПРА на линиях с постоянным напряжением

Светодиоды

Светодиоды

Светодиоды

Светодиоды

Лучшие сроки окупаемости вариантов 8б и 8в объясняются реализацией максимальной экономии электроэнергии при более высокой надежности ЭПРА в сравнении с другими вариантами.

Очевидно, что варианты 4 и 6 из-за меньшей экономии электроэнергии существенно проигрывают варианту 8 в далекой перспективе. Что касается варианта 5, то его недостаточно высокие показатели могут быть объяснены относительно большей ценой ЭПРА и сравнительно меньшей их надежностью. При отладке серийного изготовления высоконадежных ЭПРА при всех других равных условиях этот вариант, вероятно, сможет по эффективности конкурировать с вариантом 8. Система наружного освещения со светодиодными светильниками (вариант 9) имеет большие начальные затраты (высокая цена светильников) и меньшую экономию электроэнергии в сравнении с другими вариантами, СО такой системы превышает 6 лет. Очевидно, что при таких показателях наибольшее применение в НО светодиодные светильники найдут не в утилитарном освещении, а в архитектурно-художественной подсветке.

Особо следует отметить, что расчеты проводились для нового строительства линий НО, либо их капитальной реконструкции. Внедрение технологий энергосбережения на действующих линиях НО без капитальной реконструкции линий потребует уточняющих расчетов, при этом оценки отдельных вариантов могут претерпеть изменения. Впрочем, такие расчеты необходимы для любого конкретного проекта.


Таким образом в области наружного освещения в настоящее время происходит революционное развитие технологий, связанное с расширением возможностей по экономии энергопотребления за счет рационального управления.

На конкретном примере разработки в области управления энергосбережением впервые проведена технико-экономическая оценка эффекта внедрения различных типов технологий на самом раннем этапе проектирования системы.

Анализ и предварительный расчет экономической эффективности вариантов внедрения энергосберегающих технологий показывает наибольшую перспективность систем освещения с ЭПРА на линиях с постоянным и переменным напряжением, обеспечивающих быструю окупаемость и экономию электроэнергии до 40—45%.