Что такое КПД? Тепловые машины Формула кпд тепловой машины в физике


Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т 1 и Т 2 .

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина - по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q 2 = ||

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η" > η, то А" > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η", то можно другую машину заставить работать по обратному циклу, а машину Карно - по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η" = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η" > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|" < г| не противоречит второму закону термодинамики, так как необратимая тепловая машина не может работать как холодильная машина. Следовательно, КПД любой тепловой машины η" ≤ η, или

Это и есть основной результат:

(5.12.13)

Кпд реальных тепловых машин

Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и Т 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно:

Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания.

Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения
, где Т 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника.

Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.

Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 - |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

3) Под идеальной понимается тепловая машина, имеющая максимальный к.п.д. при заданных значениях нагревателя T 1 и холодильника T 2 .
Из второго начала термодинамики следует, что даже у идеального теплового двигателя, работающего без потерь, к.п.д. принципиально ниже 100 % и вычисляется по формуле:

Рабочим телом в идеальной тепловой машине является идеальный газ, а работает она по циклу Карно:

4) Понятие энтропии впервые было введено Клаузиусом в термодинамике для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального . Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при замкнутых обратимых процессах, тогда как в необратимых - её изменение всегда положительно.

Математически энтропия определяется как функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы:

где - приращение энтропии; - минимальная теплота, подведённая к системе; - абсолютная температура процесса.

Энтропия устанавливает связь между макро- и микро- состояниями. Особенность данной характеристики заключается в том, что это единственная функция в физике, которая показывает направленность процессов. Поскольку энтропия является функцией состояния, то она не зависит от того, как осуществлён переход из одного состояния системы в другое, а определяется только начальным и конечным состояниями системы.



Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся выделением тепла, вследствие изменения структуры.

Рудольф Клаузиус дал величине имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Видео по теме

Источники:

  • как определить кпд

КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется результативностью.

Инструкция

Расчет КПД с определения энергии, потраченной непосредственно для достижения результата. Она может быть выражена в единицах, необходимых для достижения результата энергии, силы, мощности.
Чтобы не ошибиться, полезно держать в уме следующую схему. Простейшая включает в себя элемента: «рабочий », источник энергии, органы управления, пути и элементы проведения и преобразования энергии. Энергия, потраченная на достижение результата – это энергия, затраченная только «рабочим инструментом».

Далее вы определяете энергию, реально потраченную всей системой в процессе достижения результата. То есть не только «рабочим инструментом», но и органами управления, преобразователями энергии, а также к затратам следует отнести энергию, рассеянную в путях проведения энергии.

И далее вы подсчитываете коэффициент полезного действия по формуле:
К.П.Д. = (А / В)*100%, где
А – энергия, необходимая на достижение результата
В – энергия, реально затраченная системой на достижение результатов.Например: на проведение электроинструментальных работ было потрачено 100 кВт, при этом вся энергосистема цеха за это время потребила 120 кВт. КПД системы (энергосистемы цеха) в этом случае будет равен 100 кВт / 120 кВт = 0.83*100% = 83%.

Видео по теме

Обратите внимание

Часто понятие КПД применяют, оценивая отношение запланированных расходов энергии и реально потраченных. Например, соотношение запланированных объемов работ (или времени, необходимого для выполнения работы) к реально произведенным работам и потраченному времени. Здесь следует быть предельно внимательным. Например, запланировали затратить на работы 200 кВт, а затратили 100 кВт. Или запланировали произвести работы за 1 час, а затратили 0.5 часа; в обоих случаях КПД получается 200%, что невозможно. На самом деле в таких случаях имеет место, как говорят экономисты, «стахановский синдром», то есть сознательное занижение плана по отношению к реально необходимым затратам.

Полезный совет

1. Затраты энергии вы должны оценивать в одних и тех же единицах.

2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

Источники:

  • как посчитать энергии

Совет 3: Как рассчитать эффективность танка в игре World of Tanks

Рейтинг эффективности танка или его КПД – один из комплексных показателей игрового мастерства. Его учитывают при приеме в топовые кланы, в киберспортивные команды, в роты. Формула расчета довольно сложна, поэтому игроки пользуются различными онлайн-калькуляторами.

Формула расчета

Одна из первых формул расчета выглядела так:
R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
- R – боевая эффективность игрока;
- К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
- L – средний уровень танка;
- S – среднее количество обнаруженных танков;
- Ddmg – среднее количество нанесенного урона за бой;
- Ddef – среднее количество очков защиты базы;
- С – среднее количество очков захвата базы.

Значение полученных цифр:
- менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
- от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
- от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
- от 1200 и выше – сильный игрок; таких игроков около 25%;
- свыше 1800 – уникальный игрок; таких не более 1%.

Американские игроки используют свою формулу WN6, выглядящую так:
wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE - 35) x 0.134))) - 500) x 0.45 + (6-MIN(TIER,6)) x 60

В этой формуле:
MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
FRAGS – среднее количество уничтоженных танков
TIER – средний уровень танков игрока
DAMAGE – средний урон в бою
MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
WINRATE – общий процент побед

Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

Как повысить эффективность

Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

Поэтому большинство игроков улучшают свою статистику, играя на низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

Термин «КПД» - это аббревиатура, образованная от словосочетания «коэффициент полезного действия». В самом общем виде он представляет собой соотношение затраченных ресурсов и результата выполненной с их использованием работы.

КПД

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q - объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

КПД двигателя

Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса - бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии - до 25% - теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, - посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

Видео по теме

Источники:

  • О ДВС, его резервах и перспективах развития глазами специалиста

Коэффициент полезного действия (КПД) - термин, которые можно применить, пожалуй, к каждой системе и устройству. Даже у человека есть КПД, правда, наверно, пока не существует объективной формулы для его нахождения. В этой статье расскажем подробно, что такое КПД и как его можно рассчитать для различных систем.

КПД-определение

КПД - это показатель, характеризующий эффективность той или иной системы в отношении отдачи или преобразования энергии. КПД - безмерная величина и представляется либо числовым значением в диапазоне от 0 до 1, либо в процентах.

Общая формула

КПД обозначается символом Ƞ.

Общая математическая формула нахождения КПД записывается следующим образом:

Ƞ=А/Q, где А - полезная энергия/работа, выполненная системой, а Q - энергия, потребляемая этой системой для организации процесса получения полезного выхода.

Коэффициент полезного действия, к сожалению, всегда меньше единицы или равен ей, поскольку, согласно закону сохранения энергии, мы не можем получить работы больше, чем потрачено энергии. Кроме того, КПД, на самом деле, крайне редко равняется единице, так как полезная работа всегда сопровождается наличием потерь, например, на нагрев механизма.

КПД теплового двигателя

Тепловой двигатель - это устройство, превращающее тепловую энергию в механическую. В тепловом двигателе работа определяется разностью количества теплоты, полученного от нагревателя, и количества теплоты, отданной охладителю, а потому КПД определяется по формуле:

  • Ƞ=Qн-Qх/Qн, где Qн - количество теплоты, полученное от нагревателя, а Qх - количество теплоты, отданное охладителю.

Считается, что высочайший КПД обеспечивают двигатели, работающие по циклу Карно. В данном случае КПД определяется по формуле:

  • Ƞ=T1-T2/T1, где Т1 - температура горячего источника, T2 - температура холодного источника.

КПД электрического двигателя

Электрический двигатель - это устройство, которое преобразует электрическую энергию в механическую, так что КПД в данном случае - это коэффициент эффективности устройства в отношении преобразования электрической энергии в механическую. Формула нахождения КПД электрического двигателя выглядит так:

  • Ƞ=P2/P1, где P1 - подведенная электрическая мощность, P2 - полезная механическая мощность, выработанная двигателем.

Электрическая мощность находится как произведение тока и напряжения системы (P=UI), а механическая - как отношение работы к единице времени (P=A/t)

КПД трансформатора

Трансформатор - это устройство, которое преобразует переменный ток одного напряжения в переменный ток другого напряжения, сохраняя частоту. Кроме того, трансформаторы также могут преобразовывать переменный ток в постоянный.

Коэффициент полезного действия трансформатора находится по формуле:

  • Ƞ=1/1+(P0+PL*n2)/(P2*n), где P0 - потери режима холостого хода, PL - нагрузочные потери, P2 - активная мощность, отдаваемая нагрузке, n - относительная степень нагружения.

КПД или не КПД?

Стоит заметить, что помимо КПД существует еще ряд показателей, которые характеризуют эффективность энергетических процессов, и иногда мы можем встретить описания типа - КПД порядка 130%, однако в данном случае нужно понимать, что термин применен не совсем корректно, и, вероятнее всего, автор или производитель понимает под данной аббревиатурой несколько иную характеристику.

К примеру, тепловые насосы отличаются тем, что они могут отдавать больше теплоты, чем расходуют. Так, холодильная машина может отвести от охлаждаемого объекта больше теплоты, чем затрачено в энергетическом эквиваленте на организацию отвода. Показатель эффективности холодильной машины называется холодильным коэффициентом, обозначается буквой Ɛ и определяется по формуле: Ɛ=Qx/A, где Qx - тепло, отводимое от холодного конца, A - работа, затраченная на процесс отвода. Однако иногда холодильный коэффициент называют и КПД холодильной машины.

Интересно также, что КПД котлов, работающих на органическом топливе, рассчитывается обычно по низшей теплоте сгорания, при этом он может получиться больше единицы. Тем не менее, его все равно традиционно называют КПД. Можно определять КПД котла по высшей теплоте сгорания, и тогда он всегда будет меньше единицы, однако в данном случае неудобно будет сравнивать показатели котлов с данными других установок.

Темы кодификатора ЕГЭ : принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов - в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель - это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя - это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем - сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически , обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть class="tex" alt="A>0"> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где - изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния ). В итоге работа газа за цикл получается равна:

(1)

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику - для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя - это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

(2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело - ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь - «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом . Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент - это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине - это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу - нагревателю . Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки . Площадь цикла - это работа , совершаемая внешним источником (рис. 4 ).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины - охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда - в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент , равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос . Тогда её назначение - нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда - холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент , равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника .

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная - . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно , состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5 ). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

(3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой . Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это - проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.