Аддитивные технологии преимущества и недостатки. Аддитивные технологии - индикатор развития государства. Аддитивные технологии в машиностроении


Развитие аддитивной индустрии, начинавшееся с небольших 3D-принтеров, на которых можно было изготовить пластиковые детали, шагнуло далеко вперед. И сегодня эти технологии экспериментально осваивают такие промышленные гиганты, как General Electric и Siemens, а различные страны мира наперегонки запускают соответствующие госпрограммы и открывают исследовательские центры. В России применение 3D-печати в промышленности находится пока в зачаточном состоянии, но и в ОПК, и в атомной отрасли об этом всерьез задумываются.

Казалось бы, что можно распечатать с помощью 3D-принтера? Маленькие сувениры, незатейливые игрушки, различные всевозможные бытовые приспособления - выбор ограничен лишь вашей фантазией и знанием программы CAD. Но немногие знают, что сегодня технология 3D-печати уже перешагнула все немыслимые границы: архитекторы из Шанхая и Амстердама печатают целые жилые дома, молодые модельеры экспериментируют с 3D-принтерами при создании одежды и обуви, а медики уже не только печатают протезы и имплантаты, но и работают над созданием искусственных органов и тканей человека. Серьезной заявкой на занятие уверенных позиций в промышленности и вызовом традиционным методам изготовления деталей стал тот факт, что такие отраслевые гиганты, как General Electric и Siemens, уже применяют аддитивные технологии, правда, пока в качестве эксперимента.

Протез руки двенадцатилетнего Леона Маккарти изготовлен из частей, напечатанных на 3D-принтере MakerBot (Фото: Brian Snyder/Reuters)

По данным американской консалтинговой компании Wohlers Associates, наибольший спрос на аддитивные технологии наблюдается в потребительском секторе товаров и электроники (22% выручки индустрии 3D-печати по итогам 2012 года), автомобильной промышленности (19%), медицине и стоматологии (16%), на производстве (13%), в авиакосмической отрасли (10%).

Термин, которым в мировой практике обозначается применение 3D-печати в промышленности, - «аддитивные технологии» (Additive manufacturing), что означает изготовление изделия путем добавления. Аддитивные технологии отличаются друг от друга выбором материалов и способа их нанесения, однако во всех случаях создание модели основывается на послойном наращивании. Расходными материалами может послужить пластик, бетон, гипс, деревянное волокно, поликарбонат, металл и даже живые клетки и шоколад. Способов нанесения существует два: струйный и лазерный. К струйному способу относятся такие технологии, как моделирование методом наплавления (Fused deposition modeling) и Polyjet, а к лазерному - послойное ламинирование (Laminated object manufacturing), селективное лазерное плавление (Selective laser melting), селективное лазерное спекание (Selective laser sintering), лазерная наплавка металла (Laser metal deposition) и лазерная стереолитография (Laser stereolithography).

Комментарий эксперта:

Евгений Каблов , генеральный директор ВИАМ: На данный момент предприятия авиационной отрасли закупают и используют порошки сплавов зарубежного производства, поставляемые фирмами - производителями установок. При этом имеется острая потребность в металлических порошках отечественных сплавов. Серийного производства порошковых материалов для данных технологий в России нет. Потребность существующего парка установок для аддитивного производства в РФ в порошковых материалах составляет примерно 20 тонн в год.

Для решения данной проблемы в ВИАМ организован замкнутый цикл аддитивного производства деталей газотурбинных двигателей, включающий производство расходуемой шихтовой заготовки, получение мелкодисперсных металлических порошков отечественных сплавов и разработку технологий селективного лазерного спекания деталей из этих порошков с последующей газостатической обработкой. Возможность проведения полного цикла исследований и обеспечения выпускаемой продукции необходимой научно-технической документацией открывает также перспективу организации в ВИАМ серийного производства металлических порошков с последующей их сертификацией для ведущих моторостроительных предприятий.

ИСТОРИЯ ИНДУСТРИИ

Несмотря на то что о 3D-принтерах стали активно говорить только в последние годы, история развития трехмерной печати насчитывает около 30 лет: первое применение было зафиксировано в 1980-х годах. Родоначальником аддитивных технологий принято считать Чарльза Халла, который в 1986 году запатентовал такой способ, как стереолитография. В этом же году американец основал компанию 3D Systems и разработал первый 3D-принтер Stereolithography Apparatus. А в 1988 году, усовершенствовав прежнюю модель, компания начала первое серийное производство 3D-принтеров SLA-250. Второй вехой развития 3D-печати стало открытие в 1988 году технологии послойного наплавления FDМ Скоттом Крампом и основание им же компании Stratasys.

Изначально термина «3D-печать» не существовало, и инновационные технологии назывались «быстрое прототипирование». Новый термин появился в 1995 году благодаря двум студентам Массачусетского технологического института - Джиму Бредту и Тиму Андерсону. Они придумали перестроить работу обычного струйного принтера так, чтобы он делал объемное изображение в специальной емкости, после чего запатентовали идею и открыли компанию Z Corporation. Эта технология, в основе которой лежит послойное склеивание порошка, до сих пор используется для промышленного моделирования.

Прототипы держателей для авиационных двигателей, напечатанные на 3D-принтере (изображение GE)

Неудивительно, что компании, созданные прародителями технологии, являются в современном мире лидерами индустрии. К числу основных игроков рынка также относятся компании Arcam, ExOne, Voxeljet, SLM Solutions, Shapeways. Их стремится догнать Hewlett-Packard, активно работающая на рынке традиционных принтеров. Руководитель HP Мег Уитмен недавно заявила, что компания намерена решить две основные проблемы, сдерживающие развитие 3D-принтеров, увеличив скорость печати и улучшив качество. HP обещает представить свои разработки в июне 2014 года, а пока лишь остается гадать, что это будет: новая технология или новый 3D-принтер.

КАК И ГДЕ ЭТО РАБОТАЕТ

Наиболее распространенное применение 3D-печати - это создание прототипов изделия. Модели реальных размеров помогают оценить функциональность и исключить возможность различных ошибок перед серийным производством изделия. Одним из популярных методов прототипирования является лазерная стереолитография, в которой в качестве исходного материала используется жидкий фотополимер. Лазерный луч формирует на поверхности жидкости рисунок будущей модели, затем опускается внутрь фотополимера на один слой. Под лазерным излучением исходный материал затвердевает, а лазер продолжает рисовать еще один слой с последующим погружением.

Пластик по-прежнему является самым распространенным материалом для аддитивной печати. Но существует и масса технологий для металлической 3D-печати. Например, селективное лазерное плавление. Действуют эти принтеры так: на рабочую поверхность распыляется равномерный слой металлического порошка, после чего включается лазер, который плавит области в соответствии с заданной моделью. После этого рабочая поверхность опускается на уровень одного слоя, и операция повторяется вновь. Благодаря тому что процесс происходит в бескислородной среде, полученная модель не окисляется. Технология позволяет создавать геометрически сложные предметы из различных видов стали и титана.

На том же принципе основано селективное лазерное спекание, только в качестве расходного материала используются полимерные порошки. Еще одна технология - лазерная наплавка металла, ее применяют как для создания новых деталей, так и для восстановления изношенных поверхностей. Например, при ремонте детали с трещиной на место плавления подается порошок, который плавится под лазерным излучением, а образовавшийся сплав заполняет промежуток между краями разрыва. Операцию нужно повторять вновь и вновь, пока трещина послойно не зарастет.

Производитель спортивной обуви New Balance представляет кроссовки, в которых используется произведенная на 3D-принтере пластина, которая, будучи вставлена в подошву, повышает эффективность каждого шага (Фото: New Balance/AP)

Металлическая 3D-печать привлекла внимание промышленных производителей благодаря тому, что позволяет создавать сложные изделия из различных материалов без использования дополнительного обрабатывающего оборудования и с небольшим количеством отходов: это значительно экономит время и денежные средства. За счет использования 3D-печати уменьшается вес изделия, а также исключается возможность дефектов, которые могут появиться при традиционных методах изготовления. Уже доказано, что металлические изделия, напечатанные на 3D-принтерах, по своим свойствам - плотности, остаточному напряжению, механическому поведению, неравновесной микроструктуре, кристаллографической текстуре - в лучшую сторону отличаются от изделий, созданных литейным и другими деформируемыми методами.

Исходным материалом для промышленной 3D-печати служат композиции различных мелкодисперсных металлических порошков на основе титана, алюминия, никеля, кобальта и других металлов. Как правило, они должны обладать сферичностью, определенным гранулометрическим составом с высоким выходом годного, высокой химической однородностью, пониженным содержанием газовых примесей - кислорода и азота.

ПРИМЕНЕНИЕ ПРОТОТИПОВ

Такого рода прототипы пользуются спросом у ученых в самых разных сферах, в том числе в атомной и ядерной физике. Так, национальная лаборатория в Ок-Ридже, входящая в американскую команду разработчиков ИТЭР, в целях экономии бюджета предложила использовать 3D-печать для проектирования деталей реактора. По словам американских инженеров, изучение физической модели поможет избежать ошибок, обнаружить возможность экономии материала и сделать конструкцию более функциональной. В процессе проектирования крупных деталей реактора, например 60-футового центрального соленоида, разработчики создают «игрушечные» макеты. Что касается более мелких деталей, например быстрого газового клапана для системы смягчения последствий сбоев в реакторе, их печатают в масштабе один к одному.

Специалисты ЦЕРН в аддитивных технологиях увидели решение вопроса о замене вышедших из строя сложных и уникальных компонентов, которая при традиционном производстве является длительным и дорогостоящим процессом.

Лаборатория полимеров ЦЕРН приобрела принтер с технологией стереолитографии, чтобы изучать, как новые смолы на эпоксидной, кремниевой и полиуретановой основе будут реагировать на различные процессы, такие как склеивание, литье, электрическая изоляция, и вести себя при криогенных температурах и радиации. Главным преимуществом нового аппарата является возможность производства функциональных частей с жесткими механическими свойствами. Лаборатория имеет и другой трехмерный принтер, способный склеивать тонкие слои полимерного порошка. Однако такая технология печати подходит для изучения формы определенных прототипов, но не для производства функциональных деталей.

ГЕОГРАФИЯ: ОТ ВАШИНГТОНА ДО ТОКИО

По данным Wohlers Associates, 38% мировой индустрии аддитивных технологий приходится на США, на втором месте Япония с 9,7%, за ней следует Германия с 9,4% и Китай с 8,7%. США никому не хотят уступать свои лидерские позиции в 3D-печати. Для ускорения процесса развития инновационных технологий пять ведомств - Минобороны, Минэнерго, Министерство торговли, Научный национальный фонд и NASA - выступили инициаторами создания в 2012 году Национального института инновационного производства, который позже был переименован в America Makes. Эта организация способствует сотрудничеству лидеров бизнеса и научных учреждений, помогая продвижению инновационных разработок в аддитивных технологиях на мировом рынке. В работе института участвуют около 100 компаний, некоммерческих организаций и государственных учреждений.

Вторым серьезным шагом стало начало строительства Digital Lab for Manufacturing в Чикаго. На этот проект Минобороны уже выделило $ 70 млн, еще $ 250 млн поступлений ожидается от представителей индустрии, образовательных учреждений, правительства и общественных партнеров. Digital Lab будет иметь общих партнеров с America Makes, это такие промышленные гиганты, как Rolls-Royce, Dow Chemical, Procter & Gamble, General Electric, General Dynamics, Lockheed Martin, Honeywell, Rockwell Collins, Microsoft, Boeing, Autodesk и 3D Systems. В настоящее время Digital Lab запускает открытую онлайн-платформу программного обеспечения для проектирования и сотрудничества в режиме реального времени.

Siemens с января 2014 года будет использовать 3D-принтеры для печати элементов газовых турбин. Этот смелый шаг переводит Siemens в разряд пионеров в использовании металлической 3D-печати в промышленных масштабах

А президент США Барак Обама анонсировал создание Института производственных инноваций в легких и современных металлах в Детройте - на этот проект Минобороны также выделит $ 70 млн.

Европа оказалась «штаб-квартирой» для крупнейших производителей промышленных 3D-принтеров: Voxeljet, SLM Solutions, EOS GmbH, Concept Laser, Realizes (все пять - Германия), Arcam (Швеция), Phenix Systems (Франция), Renishaw (Великобритания). Европейские страны также понимают перспективность аддитивных технологий и оказывают поддержку развитию отрасли. Так, Минфин Великобритании готов выделить около $ 25 млн на создание к 2015 году Центра аддитивных технологий. Новый центр расположится рядом с Центром технологического производства в Ковентри и будет заниматься разработкой изделий для реактивных двигателей, автопрома и медицины. А вот в Германии инициатива исходит от индустрии (при поддержке федеральных земель): Boeing, EOS GmbH, Evonik Industries, MCP HEK Tooling совместно с университетом в Падерборне еще в 2008 году открыли исследовательский центр DMRC, в котором в 2012 году было реализовано уже девять проектов в этом направлении.

Другой крупной инициативой является пятилетний проект AMAZE, о запуске которого сообщило в 2013 году Европейское космическое агентство. Бюджет проекта, участниками которого являются 28 компаний, в том числе Airbus, Astrium, Norsk Titanium, Университет Кренфилда и EADS, составил около 20 млн евро. Одной из целей проекта является создание металлических изделий высокого качества, способных работать при экстремально высокой температуре, которая достигается, например, при термоядерной реакции или в соплах ракет.

Китай, используя всю мощь своей индустрии, намерен пошатнуть лидерские позиции США. Профильный промышленный союз КНР прогнозирует, что к 2016 году китайский рынок 3D-печати достигнет $ 1,65 млрд, что в 10 раз больше по сравнению с 2012 годом. Для достижения амбициозной цели в конце 2012 года был образован Индустриальный альянс Китая по технологиям 3D-печати, состоящий из 30 китайских научно-исследовательских институтов и ведущих компаний отрасли. Эта организация планирует построить 10 инновационных центров и инвестировать в каждый по $ 3,3 млн. Тем временем успехи китайских инженеров по значимости не уступают европейским и американским. В Китае прошли первые испытания истребителя с несущей конструкцией, напечатанной из порошка титана. А компания Southern Fan представила крупнейший в мире 3D-принтер (28 метров в длину, 23 метра в ширину и 9,5 метра в высоту), способный производить металлические компоненты с максимальным диаметром до 6 метров и весом до 300 тонн. Изделия планируется применять в ядерной, нефтехимической, металлургической отрасли.

Япония также оценивала перспективы трехмерной печати и в начале 2014 года создала научно-исследовательскую ассоциацию по разработке промышленных 3D-принтеров, предназначенных для изготовления сложных деталей из металла с целью применения в авиации и медицине. Министерство экономики, торговли и промышленности Японии намерено выделить на реализацию проекта около $ 37 млн. По ожиданиям властей, первые устройства появятся к 2015 году, а в конце 2019 года стартует массовая продажа 3D-принтеров. Членами ассоциации стали национальные университеты и 27 технологических компаний, в том числе Panasonic, Mitsubishi Heavy Industries, IHI, Kawasaki Heavy Industries, Komatsu и Nissan Motor. Ежегодный членский взнос для каждой организации будет равняться $ 5 тыс.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ

General Electric, судя по всему, как никто другой близка к запуску в коммерческое производство деталей, изготовленных с помощью аддитивных технологий. Во-первых, GE Aviation объявила о планах печатать в 3D инжекторы для своей новинки - реактивного двигателя нового поколения LEAP-1A. Первые лабораторные эксперименты GE показали, что если напечатать - слой за слоем - инжектор из кобальт-хромового порошка, изделие будет легче и долговечнее. Во-вторых, инженеры GE придумали использовать технологию лазерного спекания для изготовления кромки лопасти двигателя из титанового порошка. Обе детали должны были постепенно начать применяться в двигателях с 2013 года, а интегрировать их в полномасштабный производственный цикл планируется в 2016 году. Переход на аддитивные технологии сэкономит компании порядка $ 25 тыс. на каждом двигателе. Вскоре инженеры GE Aviation намерены включить в производство новые материалы, такие как титан, алюминий и никель-хромовые сплавы, рассчитывая добиться лучших характеристик деталей, недостижимых при использовании технологии литья. В-третьих, другое подразделение GE планирует во второй половине 2014 года запустить опытное производство металлических топливных форсунок для газовых турбин. На сегодня GE производит около 10% продукции с использованием 3D-печати, и в планах корпорации нарастить производство до 25% и 50% в течение 10 лет и 20 лет соответственно.

Логотип Nestle делается на 3D-принтере во время открытия технологического центра компании 25 марта 2013 г. (Фото: REUTERS/Denis Balibouse)

По тому же пути идет немецкий концерн Siemens, заявивший о переходе с традиционных методов производства деталей для горелок газовых турбин на технологию селективного лазерного плавления. Единственное но в новом производстве инженеры концерна видят в скорости работы 3D-принтеров.

Американское космическое ведомство NASA также объявило об успешном испытании на огнеупорность инжектора ракетного двигателя, изготовленного с помощью селективного лазерного плавления. А в августе 2014 года ведомство намерено отправить на МКС 3D-принтер для изучения возможности печати инструментов и запасных деталей в условиях микрогравитации.

ПЕРСПЕКТИВЫ И ПРОГНОЗЫ

Еще более активное развитие аддитивных технологий и применение их в промышленности пока сдерживается рядом факторов. Например, дороговизна материалов не является проблемой при использовании аддитивных технологий для производства мелких деталей. Но при выходе изделия на более крупные масштабы высокая цена - это не просто проблема, а непреодолимое препятствие.

Например, цена титанового порошка, которая обусловлена единственным пока способом его изготовления - дорогостоящим процессом Кролла, - колеблется от $ 200 до $ 400 за килограмм. Здесь ветер перемен подул с Британских островов: компания Metalysis разработала новую, менее затратную технологию производства титанового порошка и ведет переговоры по постройке фабрики для его изготовления в Йоркшире (Великобритания). Стоимость проекта оценивается в $ 500 млн. Технология заключается в получении порошка из рутила (оксида титана) с помощью электролиза. Новый метод позволяет получать порошок разных фракций, разной чистоты, морфологии и на основе разных легирующих элементов. Размеры гранул порошка могут варьироваться от 1 - 2 мм до 100 мкм. По мнению авторов технологии, себестоимость производства порошка может снизиться на 75%.

Вторым мощным импульсом развития промышленной 3D-печати может стать окончание в мае 2014 года срока действия патентов на технологию селективного лазерного спекания, принадлежащих Техасскому университету в Остине. Эксперты прогнозируют удешевление 3D-принтеров, печатающих по этой технологии, а вслед за этим - и расходных материалов. Такие ожидания основаны на событиях, имевших место в прошлом: несколько лет назад закончилось действие патентов на технологию моделирования методом наплавления, что сопровождалось резким падением цен на принтеры: с нескольких тысяч долларов до $ 200.

Также ценовая конъюнктура на этом рынке может измениться за счет конкуренции, которую в перспективе могут составить промышленные принтеры из Китая.

По прогнозам аналитической компании Canalys, объем мирового рынка 3D-печати в 2014 году может вырасти на 50% по сравнению с 2013 годом - до $ 3,8 млрд, а в 2018 году достигнет $ 16,2 млрд. Рост объема будет обусловлен расширением использования аддитивных технологий в области архитектуры, медицины, авиационно-космической, оборонной и ядерной отрасли.

WAKE UP, РОССИЯ!

У России же цифры, как это часто бывает, скромнее. Пока российский рынок составляет менее 0,5 % мирового, и в течение следующих пяти лет его темпы роста не увеличатся, отмечают в Research.Techart. Неудивительно, ведь развитие аддитивных технологий в России находится в зачаточном состоянии, основной причиной ситуации, по мнению экспертов, является отсутствие поддержки со стороны государства.

Чтобы развивать технологию, необходима работа сразу в нескольких направлениях: и подготовка квалифицированного персонала, и формирование новых стандартов, и принятие новых нормативных документов. Не менее важной проблемой является отсутствие в России серийного производства порошков. Тем не менее какие-то точечные действия в этом направлении предпринимаются как отдельными чиновниками, так и учеными.

В частности, вице-премьер РФ Дмитрий Рогозин, отвечающий в правительстве за ВПК, предлагает развивать концепцию «цифровой фабрики» с полным циклом производства, от проектирования до получения готового изделия. Такие фабрики могли бы включать в себя аддитивные технологии, высокопроизводительные автоматизированные линии для быстрого изготовления электронной компонентной базы, роботизированное управление производством, национальные CAD-, CAE-, CAM-системы, новые технологии сборочного производства, системы управления жизненным циклом изделия. По его мнению, для внедрения концепции «цифровой фабрики», а в частности развития аддитивных технологий, необходимы совместные усилия со стороны Военно-промышленной комиссии, Минпромторга РФ и Фонда перспективных исследований.

Причем в России, по словам Д. Рогозина, есть компании и научные центры, за счет которых может происходить развитие аддитивных технологий: МЦЛТ, ЗАО «НИИ ЭСТО», ЗАО «НТ-МДТ», ГК «Промтехнология», МГТУ им. Баумана, МГТУ «СТАНКИН», МИСИС, МАИ. В их арсенале есть оборудование высокого уровня, способное провести НИОКР и проконтролировать качество работ на каждом этапе. Также при поддержке федерального бюджета открываются региональные инжиниринговые центры. Помимо этого, в России работают небольшие компании, предлагающие оборудование зарубежных производителей. Однако, по убеждению вице-премьера, «слабостью и тех и других является отсутствие комплексного подхода и несогласованность действий по освоению и внедрению цифровых технологий».

Не исключено, что порошок, полученный в стенах ОАО «ВНИИХТ», станет тем самым катализатором, который даст старт серийному производству расходных материалов в России. Институт разработал новый способ получения ультрадисперсных порошков металлов с помощью металлотермического восстановления хлоридов металлов в расплаве солей. Как рассказала журналу заведующая лабораторией № 1 отдела ядерно чистых конструкционных материалов ВНИИХТ Оксана Аржаткина, этот процесс заключает в себе сразу две операции в одной - получение металла и его диспергирование. «По количеству применяемых операций наш метод значительно короче широко известного и применяемого в промышленном масштабе метода атомизации (распыливания расплава металла в струе инертного газа) и центробежного распыливания, основанного на получении металлов и последующем их диспергировании», - объясняет эксперт.

Эта технология обладает рядом достоинств: низкая температура процесса, высокий выход годного (не менее 98%), исключительно высокая однородность порошков по содержанию примесей (отклонение содержания примесей не более 0,1%), малооперационность (благодаря получению порошка металла непосредственно на операции восстановления).

Новый способ получения поликомпонентных порошков, как ожидают во ВНИИХТ, повлияет на их потребительские качества (коррозионную стойкость, высокую прочность, жаропрочность и жаростойкость, радиационную стойкость и прочие) вследствие увеличения гомогенности химического и фазового состава порошков в 10 - 50 раз по сравнению с мировым уровнем - отклонение химического состава порошков не превышает 0,1% вместо 1 - 100%). А за счет упрощения технологического процесса себестоимость порошков может снизиться на 30%, ожидает О. Аржаткина. По ее мнению, благодаря этим преимуществам и отсутствию подобных технологических решений в России и за рубежом новый способ получения порошков может составить конкуренцию мировым аналогам.

Новая разработка ВНИИХТ уже увидела свет, правда, в ограниченном масштабе: институт сотрудничал с предприятиями ядерно-оборонного комплекса по проекту получения металлического порошка гафния, а для ОАО «ЧМЗ» разработал способ получения металлического порошка циркония. Теперь же ВНИИХТ рассчитывает на более широкий круг потребителей. Так, институт уже представил новую технологию Росатому, и, по словам О. Аржаткиной, в 2014 году топ-менеджеры Росатома - руководитель дирекции ЯОК Иван Каменских и глава блока по управлению инновациями Вячеслав Першуков - в письменной форме пообещали поддержать направления по получению поликомпонентных порошков металлов в расплаве солей. По ее информации, ЗАО «Наука и инновации» планирует открыть большой проект по 3D-печати и получению расходных материалов для нее, куда планируется включить соответствующее направление ВНИИХТ.

«В первую очередь мы ориентируемся на применение нашей технологии для нужд ЯОК, но рассчитываем и на другие отрасли: атомную энергетику, авиационно-космическую промышленность, радиоэлектронику и так далее», - заключает завлабораторией ВНИИХТ.

Екатерина ВЕРШИНИНА

Трехмерная печать, появившись в 1980-е годы, прошла колоссальный эволюционный путь, разделившись на два основных направления – быстрое создание моделей и аддитивное производство. Об основных вехах этого пути - .

Революционные преимущества

Детали изготавливаются непосредственно по компьютерному файлу, содержащему 3D-модель, виртуально нарезанную на тонкие слои, который передается в АП-систему, для послойного формирования конечного изделия. АП-технологии обеспечивают гибкость, позволяющую быстрое производство сложной кастомизирoванной продукции и запасных частей, которые либо не могут быть изготовлены с помощью традиционных производственных технологий, либо требуются в малых объемах. Сложная конфигурация (например, наличие в детали внутренних каналов охлаждения), которую нельзя получить станочной обработкой, может быть легко воспроизведена селективным нанесением материала.

К преимуществам цифровых моделей относится не только произвольность формы, но и возможность их моментальной передачи в любую точку мира, что позволяет организовать локальное производство в мировых масштабах. Еще одной важной особенностью технологий АП является близость получаемой формы изделия к заданной, что существенно сокращает расходы материала и отходы производства.

Совместное исследование European Aeronautic Defense and Space Company (Бристоль, ) и EOS Innovation Center (Уорвик, Великобритания) показало, что экономия сырья при АП может достигать 75%. Благодаря всем этим качествам АП, в сравнении с традиционными производственными технологиями, обладает значительным потенциалом в том, что касается сокращения затрат, энергосбережения и снижения вредных выбросов в атмосферу.

Уникальные возможности АП обеспечивают следующие преимущества:

  • сокращение сроков и стоимости запуска изделия в производство благодаря отсутствию необходимости в специализированной инструментальной оснастке;
  • возможность и экономическая целесообразность мелкосерийного производства;
  • оперативные изменения в проекте на этапе производства;
  • функциональная оптимизация продукции (например, реализация оптимальной формы каналов охлаждения);
  • экономическая целесообразность производства кастомизированной продукции;
  • сокращение потерь и отходов производства;
  • возможности для упрощения логистики, сокращения времени поставок, уменьшения объемов складских запасов;
  • персонализация дизайна.

Рынок аддитивных технологий

2018: Frost & Sullivan прогнозирует рост рынка до $21,5 млрд к 2025 году

Обзор мирового рынка

Ежегодные темпы роста мирового рынка аддитивных технологий составляют 15%. При сохранении CAGR на таком уровне Frost & Sullivan прогнозирует увеличение объема рынка с $5,31 млрд в 2018 году до $21,5 млрд в 2025 году. По мнению аналитиков, к тому времени до 51% рынка будет приходиться на авиационную промышленность, сферу здравоохранения и автомобилестроение. Отрасли, в которых в 2025 году будет наиболее заметно использование технологий аддитивного производства, показаны на рис. 1:


Страны Северной Америки были и, по данным за 2018 года, остаются крупнейшим потребителем аддитивных технологий в мире. В 2015 году объем североамериканского рынка оценивался $2,35 млрд с перспективой роста до $7,65 млрд к 2025 году. Второй по величине - это рынок стран Европы и Ближнего Востока. В 2015 году его суммарный объем составлял $1,81 млрд, а к 2025 году он может увеличиться до $7,18 млрд.

Одним из самых быстро растущих является рынок Азиатско-Тихоокеанского региона. В период 2015-2025 гг. ежегодные темпы роста составят 18,6%, а объем увеличится более чем в 5 раз - с $1,01 млрд в 2015 до $5,56 млрд в 2025 году. При этом на долю Китая будет приходится порядка 70%, считают в Frost & Sullivan.


В странах Северной Америки технологии 3D-печати активно внедряются в аэрокосмической, оборонной и автомобильной отраслях. В последние годы резко увеличилось количество стартап-проектов как в этих, так и других сферах.

Внедрение аддитивных технологий в Европе и на Ближнем Востоке происходит медленнее, чем в странах Северной Америки. Основной фокус здесь делается на использование 3D-печати на основе лазерных технологий в судостроительной отрасли и в промышленности. В то же время в последние годы отмечается рост инвестиций в технологии 3D-печати со стороны автомобилестроительных компаний.

По информации Frost & Sullivan, с точки зрения вклада в общий рынок аддитивных технологий, Россия пока сильно отстает от стран-технологических лидеров. Причем отставание отмечается по всем основным направлениям - производство оборудования для 3D-печати, масштабы применения технологий в ключевых промышленных отраслях, производство сырья и вспомогательных материалов и т.д. По состоянию на февраль 2018 года, доля России в структуре мирового рынка аддитивного производства составляет около 1%.

Потребности России в металлических порошках для 3D-принтеров, а также оборудовании закрываются преимущественно за счет импорта продукции. Основные объемы поставок сырья приходятся на Германию и Великобританию .

Среди крупнейших потребителей порошковых материалов на российском рынке в Frost & Sullivan назвали такие предприятия, как «Авиадвигатель» и НПО «Сатурн» (в обоих случаях - разработка газотурбинных технологий и двигателей), а также «Новомет-Пермь » (производство погружных электроцентробежных насосов для добычи нефти). Значительную работу по развитию и продвижению аддитивных технологий проводят госкорпорации «Росатом » и «Роскосмос ».

По мнению аналитиков, стимулирование разработок в области аддитивного производства в России необходимо поддерживать как с помощью государственного субсидирования (компенсации затрат предприятий на производство и НИОКР), так и за счет прямых инвестиций. Одним из крупнейших игроков, оказывающих финансовую поддержку проектам в сфере аддитивных технологий, является Фонд развития промышленности , выдающий компаниям льготные займы.

Прогнозы развития

  • Применение гранул и порошковых материалов в 3D-печати позволит отказаться от использования треугольных и цилиндрических форм при изготовлении изделий;
  • Применение углеродистого (графитового) волокна и металлопорошков позволит улучшить механические, химические и термические характеристики изделий (в частности, для нефтегазовой и оборонной отраслей);
  • Производители систем компьютерного проектирования и моделирования (CAD , CAE) ведут разработки решений для 3D-печати, которые позволят снизить погрешность при изготовлении изделий и повысить точность производства;
  • Оптимизация характеристик и развитие аддитивных технологий позволит повысить точность, скорость и качество 3D-печати. К 2020 году скорость работы 3D-принтеров увеличится вдвое;
  • Одним из ключевых направлений развития сервисных услуг на рынке 3D-печати станет лизинг 3D-принтеров ;
  • Развитие получит производство 3D-принтеров, позволяющих создавать крупногабаритные изделия с высокой точностью;
  • Материал «графен», известный своими физическими и электрическими свойствами, будет применяться для производства металлических жил (волокон) и элементов питания.

2016: Топ-5 изготовителей систем АП

В число ведущих изготовителей систем АП на 2016 г входят:

  • ExOne (США),
  • Stratasys (Израиль),
  • Voxejet (Германия).

По числу смонтированных систем на 2016 г. с большим отрывом лидируют США, собравшие у себя 38% промышленных установок. Значительное количество установок эксплуатируется также в Японии (9,7%), Германии (9,4%) и Китае (8,7%). Доля России составляет 1,4%.

2012: Рост объема рынка на 28,6%

Консультант Терри Уолер (Terry Wohler) составляет и поддерживает наиболее полный свод знаний о технологиях АП (www.wohlerassociates.com), а также регулярно публикует отчеты, которые приобрели репутацию наиболее авторитетного источника информации о финансировании, тенденциях, возможностях, коллективных проектах, исследованиях и перспективных технологиях в этой области.

Согласно отчету Уолера, опубликованному в ноябре 2013 г., в 2012 г. общемировой сектор продукции и услуг АП показал совокупный годовой прирост 28,6%, что, в пересчете, соответствует рынку объемом $2,204 млрд. По прогнозам Уолера, к 2021 г. объем рынка АП составит более $10 млрд. Исследования McKinsey Global Institute свидетельствуют о том, что влияние АП на мировой ВВП может к 2025 г. достичь $550 млрд. в год.

Еще одним показателем, который отслеживает Уолер, является количество проданных установок АП. В 2012 г. было продано почти 8000 промышленных систем (с ценой выше $5,000). В структуре доходов, полученных от производства и услуг в области АП, доля, приходящаяся на изготовление составных частей конечной продукции, выросла практически с нуля в 2003 г. до 28% в 2012 г.

Технологии и оборудование

С середины 1990-х к 2016 г. были разработаны несколько процессов и систем АП, а возможности их применения существенно расширились и уже охватывают диапазон от быстрого прототипирования и изготовления простых физических макетов до поддержки в разработке дизайна продукции, создания литейных моделей и, в последнее время, непосредственного производства серийных изделий. В частности, GE Aviation объявил о серийном выпуске топливных форсунок для двигателя LEAP. Первые АП-системы производили изделия преимущественно из полимерных материалов (пластиков), тогда как к 2016 г. установки способны производить детали из металла. В аддитивных процессах с использованием металлов детали формируются путем последовательной послойной наплавки или спекания металлического порошка. Такая возможность привлекательна тем, что позволяет изготовление деталей точной или близкой к заданной формы без инструментальной оснастки с минимальной последующей механообработкой, либо вообще без нее. Это представляет особый интерес для авиационно-космической промышленности и биомедицины, поскольку делает возможным выпуск изделий с высокими эксплуатационными характеристиками при низких общих затратах.

На 2016 г. рынок АП-установок делится на три сегмента. Самые высокие темпы роста отмечаются для дешевых 3D-принтеров , ориентированных на создание концептуальных макетов и пригодных для эксплуатации в офисной среде.

Второй набор технологий, занимающий промежуточное положение по стоимости, предназначен для создания прототипов деталей с различной степенью точности и/или функциональности. Дешевые и средние по стоимости установки обычно ориентированы на полимерные материалы.

Установки высокого класса, составляющих третий сегмент, позволяют производство полимерных, металлических и керамических деталей; их цены варьируются от $200 000 до $2 000 000. Установки высокого класса могут быть оптимизированы в расчете на изготовление крупногабаритных деталей, достижение высокой производительности, использование нескольких материалов или с любой другой целью, что повышает стоимость системы.

Энергопотребление и влияние на окружающую среду

Исчерпывающее сравнение АП и других производственных процессов с точки зрения энергопотребления, расходования водных ресурсов, захоронения отходов и использования первичных материалов проведено к 2016 г. в рамках проекта ATKINS. Результаты проекта указывают на то, что с точки зрения влияния на окружающую среду АП имеет явные преимущества, однако энергопотребление этой технологии (13,1 кг CO2 на изделие) значительно выше показателей для технологий литья (1,9 кг CO2). Впрочем, другие исследования потребления энергии в различных процессах АП ведут к заметным расхождениям в данных, что указывает на необходимость дальнейшего, более целенаправленного изучения этой проблемы.

Аналогичным образом у технологий АП есть значительный потенциал в вопросе снижения выброса парниковых газов посредством оптимизации дизайна изделий и сокращения потерь материала. Результаты проекта ATIKINS приводят к заключению, что оптимальный дизайн должен приводить к 40%-ному снижению веса и экономии материала. Выполненный в рамках проекта анализ показывает, что снижение веса магистрального самолета на 100 кг на протяжении всего жизненного цикла влечет за собой экономию $2,5 млн на топливных расходах и сокращает выбросы углекислого газа на 1,3 млн т.

Имеется несколько отчетов по результатам исследований влияния АП на окружающую среду. Однако многие вопросы к 2016 г. остаются неразрешенными, и точная оценка экологических последствий АП требует дальнейших исследований. При этом очевидно, что наибольший потенциал в вопросах снижения влияния на окружающую среду имеют изделия, спроектированные таким образом, чтобы в полной мере задействовать уникальные возможности по снижению веса, предлагаемые технологиями АП.

Применения аддитивного производства

На 2016 г. преобладающей областью использования АП-процессов остается быстрое прототипирование. Некоторую часть приложений технологии АП составляет также быстрое изготовление инструментальной оснастки, в частности производство пресс-форм.

По мере совершенствования существующих и разработки новых, более развитых технологий АП они находят себе все более широкое применение. К 2016 г. эти технологии используются для изготовления разнообразной продукции, в том числе инструментов для формования, деталей для авиационно-космической, оборонной и автомобильной промышленности, электроники и многого другого.

Авиационно-космическая промышленность

Эта сфера проявляет острый интерес к АП-технологиям с момента их появления; возможность устранить множество ограничений на пути от проекта к производству позволяет реализовать в проекте решения, повышающие эффективность и снижающие вес деталей. Более того, по самой своей природе этот рынок требует мелкосерийного производства высококачественных деталей, поэтому избавление от инструментальной оснастки, предлагаемое АП-технологиями, приносит существенные выгоды. Сертификационные требования в этой сфере являются весьма жесткими. Тем не менее ряд систем и материалов прошел сертификацию, и на 2016 г АП-технологии используются для мелкосерийного производства деталей летательных аппаратов.

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

08.06.2016

Перспективы применения аддитивных технологий при производстве дорожно-строительных машин

Основными направлениями развития машиностроения в настоящее время являются: применение новых полимерных, композиционных, интеллектуальных материалов при производстве деталей машин; разработка новых технологических методов, оборудования и процессов производства изделий машиностроения.

Первым шагом на пути создания машины является пространственное проектирование изделий машиностроения с применением компьютерных виртуальных цифровых трехмерных моделей, что стало возможно благодаря внедрению современного программного обеспечения (CAD-программы), моделирования и расчетов (CAE).

Внедрение технологий «трехмерной печати» (3D-печать) обеспечивает возможность создания детали машины или изделия в целом на основе разработанной 3D-модели в кратчайшие сроки и с минимальными потерями материалов. Методы изготовления изделий, основанные на процессе объединения материала с целью создания объекта из данных 3D-модели, получили обобщающее название «аддитивные технологии» (additive).

В этом контексте традиционные машиностроительные технологии, основанные на механической обработке заготовки, при которой происходит удаление части материала (точение, фрезерование), являются «отнимающими» (subtractive).

В основе современных аддитивных технологий лежит метод формирования детали из полимерного композиционного материала путем постепенного наращивания с помощью термического или какого-либо иного воздействия, в результате которого получается деталь необходимой формы с заданными размерами. В настоящее время существует уже более 30 различных типов аддитивных технологических процессов.

Основными преимуществами аддитивных технологий перед традиционными являются:

Сокращение трудоемкости изготовления;
сокращение сроков проектирования и изготовления детали;
снижение себестоимости проектирования и изготовления детали;
экономия машиностроительных материалов. Время возникновения аддитивных
технологий относится к концу 80-х годов прошлого века. Пионером в этой области является компания 3D Systems (США).

Первая классификация аддитивных технологических методов производства деталей была приведена в стандарте ASTM F2792.1549323-1 (США), в значительной степени устаревшая за последние двадцать лет в связи с бурным развитием технологического оборудования.

1 сентября 2015 года приказом Рос-стандарта создан технический комитет «Аддитивные технологии» для разработки терминов, определений и стандартов, относящихся к ним.

Разработка классификации аддитивных технологий с учетом разнообразия применяемых методов, материалов и оборудования является непростой задачей.

Во-первых, следует выделить два направления развития аддитивных технологий по принципу формирования детали

Направления развития аддитивных технологий по принципу формирования детали

Первое направление предусматривает формирование детали путем объединения материала, распределенного на рабочей поверхности платформы технологического оборудования (Bed deposition). После окончания процесса изготовления остается некоторый объём материала, который может использоваться для формирования следующей детали.

Процессы объединения материала, распределенного на платформе, заложены в основу различных видов технологического оборудования для производства деталей методами аддитивных технологий:

SLA – Steriolithography Apparatus;
SLM – Selective Laser Melting;
DMLS – Direct metal laser sintering;
EBM – Electron Beam Melting;
SHS – Selective Heat Sintering;
MIM – Metal Injection Molding;
Ink-Jet или Binder jetting;
UAM – Ultrasonic additive manufacturing;
LOM – Laminated Object Manufacturing.

Второе направление формирования деталей – путем прямого осаждения материала (Direct deposition). В этом случае изделие формируется послойно непосредственно из разогретого до необходимой температуры материала, поступающего на рабочую платформу из специального распределяющего устройства.

На принципе прямого осаждения материала построены следующие виды технологического оборудования для производства деталей методами аддитивных технологий:

CLAD – Construction Laser Additive Di-recte;
EBDM – Electron beam Direct Manufacturing;
MJS – Multiphase Jet Solidification;
BPM – Ballistic particle manufacturing;
MJM – Multi jetting Material.

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании
детали

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании детали

Классификация аддитивных технологий по виду используемого материала

Классификация аддитивных технологий по виду используемого материала

В зависимости от вида и исходной формы материала, используемого для изготовления деталей, различают виды аддитивных технологий

Классификация аддитивных технологий по виду и форме материала, используемого для изготовления деталей

Фидсток (Feedstock) – международное название гранулированной смеси порошка и связующего материала.

Очевидно, что для производства исходных материалов, используемых при формировании деталей с помощью аддитивных технологий, применяются различные виды специального технологического оборудования, перечисление и описание которых не предусмотрено рамками данной статьи.

Процесс создания изделия с применением аддитивных технологий можно представить в виде последовательности действий

Структура аддитивного технологического процесса производства изделий машиностроения

В соответствии с представленным на рис. 5 алгоритмом на первом этапе создания изделия осуществляется разработка 3D-модели с использованием CAD-программы в соответствии с техническим заданием и требованиями стандартов.

После этого необходимо экспортировать данные файла программы твердотельного моделирования в формат, воспринимаемый программой управляющей машины аддитивного производства (например, «STL»).
Перед следующим этапом проводится выявление возможных дефектов модели. Модель, предназначенная для 3D-печати, должна быть герметичной, монолитной и не содержать полых стенок, что обеспечивается с помощью специальных программ.

Далее осуществляется преобразование информации из STL-файла в команды, следуя которым 3D-принтер производит изделие, это так называемый G-код. Во время этой процедуры следует выбрать нужный масштаб детали, правильное положение в пространстве, а также точно позиционировать модель на рабочей поверхности. От этого зависит результат всего процесса, прочность, шероховатость поверхности детали и расход материала.

После выполнения настроек происходит разделение модели на слои материала, «укладываемые» в тело детали за один рабочий цикл аддитивной машины. Этот процесс получил название нарезка (slicing – англ.). Нарезка производится с помощью программного обеспечения, поставляемого с машиной, или с помощью специальных средств (Skein-forge, Slic3r, KISSlicer, MakerWare и др.).

Полученный на предыдущей стадии G-код передается на 3D-принтер через флеш-память или через USB-кабель.
В процессе подготовки и настройки аддитивной машины выполняются калибровка, предварительный нагрев рабочих органов, выбор модельного материала и задание зависящих от него параметров режимов работы оборудования.

На устройствах профессионального уровня этот этап может быть совмещен с процедурами процесса нарезки.

После того как выполнены все подготовительные операции, запускается процесс печати, то есть послойного объединения материалов. Его продолжи тельность зависит от типа технологии и выбранных параметров точности и качества изготовления детали.

Созданную деталь при необходимости подвергают дополнительным технологическим воздействиям: удаление поддерживающих опор, химическая или термическая обработка, финишная доводка рабочих поверхностей.
На заключительной стадии производства проводится контроль качества изготовления детали, включающий проверку соответствия нормативным требованиям геометрических размеров, показателей физико-механических свойств и других параметров, влияющих на потребительские свойства изделия.

Для строительных и транспортно-технологических машин перспективы применения аддитивных технологий в первую очередь очевидны при производстве следующих видов деталей:

Пластиковые корпусные детали электрических приборов;
комплектующие гидравлического оборудования (уплотнения направляющих поршней и поршни гидроцилиндров, разъемные соединения, элементы распределителей, насосов и гидромоторов);
изготовление патрубков систем охлаждения и питания двигателя;
детали отделки кабины оператора: рукояти рычагов, панели, переключатели, джойстики и др.;
корпусные, предохранительные, шарнирные и другие детали навесного рабочего оборудования;
втулки шарниров подвижных соединений, работающие в качестве подшипника скольжения рабочего оборудования.

Особый интерес представляет возможность применения аддитивных технологий для быстрого прототипирования при разработке рабочего оборудования строительных машин.

Разработка прототипа (макета) рабочего органа является важнейшим этапом создания машины. Прототип готового изделия не только дает представление о его внешнем виде и габаритно-массовых характеристиках, но также позволяет провести оценку соответствия достигнутых эксплуатационных свойств требованиям технического задания.

Рассмотрим процедуру прототипирования с применением аддитивных технологий на примере ковша экскаватора.
Быстрое прототипирование при проектировании новых модификаций ковшей обеспечивает:

Визуализацию внешнего вида ковша;
подтверждение совместимости кинематических параметров с базовой машиной;
возможность оценки заполнения ковша грунтом и его последующей разгрузки, что играет немаловажную роль при разработке грунтов, обладающих высокой липкостью или примерзаемостью;
возможность изучения процесса стружкообразования при резании грунта ковшом;
выявление зон, подверженных наибольшему абразивному износу при работе;
проработку технологических процессов сборки, сварки, механической обработки и покраски;
обучение сотрудников. Широкие возможности предоставляет
разнообразие типов и свойств модельных материалов, применяемых для прототипирования. Например, модель, созданная из прозрачного полимера, позволяет исследовать не только взаимодействие поверхностей рабочего органа экскаватора с грунтом при заполнении, но также и процессы, происходящие в разрабатываемом грунте. Это позволяет подобрать оптимальную форму ковша, обеспечивающую наименьшие сопротивление при копании грунта.


Цифровая модель прототипа ковша эксковатора

Анализ модели с помощью метода конечных элементов позволяет оценить распределение напряжений, возникающих в конструкции в процессе копания


Распределение внутренних напряжений в конструкции ковша экскаватора в процессе разработки грунта

Создание и испытание прототипа ковша обеспечивает:

Экономию средств на натурные испытания;
предотвращение ошибок при проектировании и сборке изделия;
снижение массы ковша;
повышение эффективности разработки грунта ковшом, что, в свою очередь, обеспечивает снижение расхода топлива;
повышение безотказности и долговечности рабочего оборудования;
возможность оценки срока службы ковша и интенсивности изнашивания зубьев в процессе разработки грунтов различных категорий. Процесс создания ковша экскаватора
с применением макета состоит из следующих этапов:
разработка цифровой 3D-модели ковша, проведение расчетов с помощью специализированных программных продуктов.
изготовление прототипа с помощью аддитивных технологий: подготовка модели к прототипированию, обоснование масштаба для макета и формирование ковша из термопластичного материала.
проведение испытаний и экспериментальных исследований прототипа ковша.
обработка и анализ результатов исследований, внесение необходимых изменений в конструкцию ковша, доработка конструкторской документации, согласование и начало производства.


Ковш экскаватора, изготовленный с учетом результатов исследований прототипа

При ремонте транспортно-технологических машин возможно использование аддитивных технологий для восстановления изношенных и поврежденных металлических деталей методами LENS, CLAD, DMD, что позволяет минимизировать применение ручного труда, повысить производительность и качество ремонта.

А вот изготовление деталей из полимерных материалов для ремонта может быть полезно следующим:

Взамен металлических – мера, снижающая простой техники из-за внезапного
отказа (временная замена). Что особенно актуально в компаниях, не проводящих мероприятия ППР. Для малого бизнеса, эксплуатирующего несколько единиц машин различного назначения, бюджет которого не позволяет содержать сотрудников для закупок запчастей или иметь запас деталей для замены;
вместо пластиковых позволит печатать детали индивидуального ремонтного размера;
применение композитных материалов по свойствам, превосходящим параметры исходной детали;
производство малого количества деталей в электротехнике и гидроприводе;
мобильность принтеров: возможно размещение в автомобиле;
относительно низкое энергопотребление.

Немаловажным фактором является и то, что при аддитивном производстве и восстановлении деталей разработчик может находиться на любом удалении от объекта (машины) благодаря широкому использованию компьютерных сетей.

Сканирование поврежденных комплектующих сборочных единиц при помощи 3D-сканера (реинжиниринг) с последующей компьютерной обработкой и печатью открывает перспективы создания универсальных многофункциональных производственно-ремонтных комплексов.
Сканирование существенно увеличивает скорость и точность производства детали, а также снижает расходы на измерительный инструмент. В настоящее время 3D-сканер уже применяется при проведении контроля качества изготовленных деталей на передовых предприятиях.

На сегодняшний день основными проблемами, сдерживающими внедрение аддитивных технологий в производство, являются ограниченный выбор используемых материалов и их высокая стоимость, ограниченность габаритных размеров создаваемых изделий и невысокая производительность оборудования. Но с учетом сложившейся динамики развития аддитивных технологий преодоление этих проблем в ближайшее время вполне реально.
Приведенные в статье результаты получены при разработке проекта № Б1124214, выполняемого в рамках проектной части Государственного задания в сфере научной деятельности за 2016 г.

Список использованной литературы
1. Слюсар, В.И. Фабрика в каждый дом. Вокруг света. — № 1 (2808).
2. Довбыш В.М., Забеднов П.В., Зленко М.А. Статья «Аддитивные технологии и изделия из металла» ГНЦ РФ ФГУП «НАМИ».
3. Зорин В.А. Баурова Н.И., Шакурова А.М. Применение капсулированных материалов при сборке и ремонте резьбовых соединений // Механизация строительства. 2014. № 8(842).
4. Зорин В.А. Баурова Н.И., Шакурова А.М. Исследование структуры капсулированного анаэробного клея // Клеи. Герметики. Технологии. 2014. № 5.
5. Баурова Н.И., Зорин В.А., Приходько В.М. Описание сценариев перехода материала из работоспособного состояния в неработоспособное с использованием уравнения теории катастроф «складка» // Клеи. Герметики. Технологии. 2014. № 8.
6. Баурова Н.И., Зорин В.А., Приходько В.М. Описание процессов деградации свойств материалов с использованием аппарата теории катастроф // Все материалы. Энциклопедический справочник. 2014. № 11.
Баурова Н.И., Сергеев А.Ю. Структурные исследования механизма разрушения клевых соединений после испытаний методом pull-out // Клеи. Герметики. Технологии. 2014. № 4.

8-11 июля в МВЦ «Екатеринбург-Экспо» состоится международная промышленная выставка металлообработки. Это крупнейшая в России площадка для презентации новых производственных технологий и оборудования отечественных и зарубежных производителей. Выставку посетят не только топ-менеджеры и инженеры крупнейших промышленных предприятий, но и представители высшего руководства страны и регионов.

В рамках выставки металлообработки откроется тематический раздел «Аддитивные технологии», который обещает стать одним из самых посещаемых разделов мероприятия. Технологии 3D-печати металлических изделий - это один из примеров, того, как промышленная революция происходит прямо на наших глазах, а технологии будущего из фантастических фильмов становятся реальностью.

Получить билет для посещения выставки

Если для большинства обывателей трехмерная печать объемных изделий все еще остается фантастикой, то дальновидные инвесторы и руководители промышленных производств уже оценили перспективы, которые открывает применение данных технологий. Быстрое проектирование и качественное производство становится ключевым фактором успеха на активно развивающихся и высококонкурентных промышленных рынках - нужно успеть выпустить на рынок новый продукт до того, как это сделают конкуренты. Поэтому все более востребованы технические решения, повышающие скорость и эффективность подготовки производственного цикла и выпуска готовой продукции.

Сферы применения аддитивных технологий:

  • Машиностроение и судостроение;
  • Авиационное производство и авиакосмическая промышленность;
  • Энергетика и атомная индустрия;
  • Электроника;
  • Военно-промышленный комплекс;
  • Медицина и стоматология;
  • Архитектура и дизайн;
  • Приборостроение и станкостроение;
  • Макетирование и прототипирование;
  • Ювелирное производство.

Стенды аддитивных технологий на ИННОПРОМ в Екатеринбурге - это место, в котором можно будет увидеть новейшие образцы 3D-оборудования и самые интересные разработки в данной отрасли. К примеру, в 2016 году в рамках выставки ИННОПРОМ корпорация «Росатом» представила первый российский промышленный 3D-принтер для метала с камерой 550×550, не уступающий западным аналогам по техническим характеристикам. Премьера отечественного образца, созданного в результате совместного проекта Научного Дивизиона Росатома с Государственным научным центром РФ АО «ЦНИИТМАШ» привлекла внимание СМИ, потенциальных покупателей и широкой общественности.

Что такое аддитивные технологии

Аддитивные технологии или Additive Manufacturing - это принципиально новый способ производства, который основан на принципе послойного синтеза. Если при традиционных способах производства деталь или объект нужной формы создается путем удаления лишнего материала из цельной заготовки, то новая технология трехмерной печати предполагает создание детали «с нуля» путем последовательного добавления слоев материала. Отсюда термин «аддитивный», происходящий от английского слова «add» (добавлять).

Виды технологий лазерной 3D печати:

  • SLS (selective laser sintering) - селективное лазерное спекание;
  • SLA (laser stereolithography) - лазерная стереолитография;
  • SLM (selective laser melting) - селективное лазерное плавление;
  • LOM (laminated object manufacturing) - послойное лазерное ламинирование;
  • LMD (laser metal deposition) - лазерная наплавка металлов;

Виды технологий струйной 3D печати:

  • FDM (fused deposition modeling) - моделирование наплавлением;
  • Polyjet - струйная печать путем отверждения жидких фотополимеров под ультрафиолетом.,/li>

Принцип работы 3Д принтеров по металлу

Работа промышленного 3D принтера не слишком отличается от привычной для нас печати на домашних или офисных устройствах для лазерной или струйной печати - разница в габаритах и в том, что печать идет в трех плоскостях. В остальном принцип похож - металлический порошковый материал подается на печатающую головку, нагревается лазерным лучом до высоких температур и послойно «спекается» в нужной последовательности до получения нужного размера и формы.

Процесс производства с помощью промышленных технологий 3D-печати:

  • Создание CAD-модели (моделирование объемной детали с помощью специального ПО;
  • Создание STL-файла и разделение на слои;
  • Подготовка принтера к работе и запуск нагревающего элемента;
  • Установка формы для детали на рабочую поверхность;
  • Заполнение питающей коробки металлическим порошком;
  • Печатающие головки с нагревающим элементом движутся по заданной программой траектории, спекая металлическую пудру и связывающее вещество, которое подается по трубкам;
  • Слой в форме высушивается специальными нагревателями;
  • Процедура повторяется для следующих слоев до полного заполнения формы;
  • Форма с деталью помещается в специальную печь, где под температурой 1800С происходит укладочный процесс;
  • Примерно через 24 часа связывающее вещество затвердевает, а жидкость испаряется, после чего с помощью обдува удаляются остатки металлической пудры на поверхности изделия.

При необходимости производятся другие процедуры финишной обработки, которые варьируются в зависимости от типа, состава и характеристик металла.

Что производят с помощью 3D принтеров по металлу:

Аддитивные технологии производства используются для создания изделий сложной формы и конфигурации, к примеру, деталей с полостями и скрытыми внутренними элементами, сетчатыми конструкциями и оригинальным рельефом. Все больше производств переходят на трехмерную печать для объектов, которые сложно или экономически невыгодно производить с помощью прессовки, штамповки, литья либо механической металлообработки.

Виды объектов, получаемых 3D-печатью:

  • Изделия штучного либо мелкосерийного производства;
  • Детали для автомобилей;
  • Инструменты из металла и металлических сплавов;
  • Комплектующие для приборов и станков;
  • Детали авиалайнеров, беспилотников и подводных лодок;
  • Детали и элементы ракет и спутников;
  • Эндопротезы и импланты.

Преимущества промышленных аддитивных технологий

Аддитивные технологии в машиностроении применяются более 20 лет, и уже прошли проверку временем и сложными условиями эксплуатации. Другие сферы, активно внедряющие трехмерную печать, также регулярно предоставляют статистические данные о выгодах и преимуществах этого направления производства. Поэтому эксперты отрасли имеют обширную базу для сравнения и могут делать выводы, основанные на длительном наблюдении и реальном опыте, а нижеуказанные преимущества носят отнюдь не теоретический характер.

1. Экономия сырья. Трехмерная печать подразумевает «выращивание» изделия с нуля, поэтому расход материала значительно уменьшается за счет отсутствия стружек и обрезков. Безотходное производство не только минимизирует затраты на сырье, но и исключает необходимость выделения дополнительных ресурсов на утилизацию отходов. При этом консервативные технологии металлообработки могут сопровождаться потерей до 80–85% материала заготовок.

2. Качество и надежность готовой продукции. Механические и технические характеристики, остаточное напряжение, плотность, прочность и прочие свойства изделий, синтезированных с помощью трехмерной печати или послойного 3D-наплавления, не только не уступают свойствам аналогов, созданных традиционным путем, но и превосходят их. Их прочность обычно на 20–30% выше, чем у кованых или литых изделий.

3. Ускорение производственного цикла. Моментальный обмен данными, быстрое проектирование и настройка производственного процесса - это то, что поможет выиграть гонку с конкурентами за счет ускорения цикла от проекта до выпуска новой линии продукции. Нет необходимости в многочисленных чертежах и расчетах - компьютерная модель изделия может присылаться из головного офиса или от сторонних подрядчиков и сразу отправляться в работу в считанные минуты.

4. Мобильность и гибкость производства. Для запуска новой серии изделий производителю не нужно закупать громоздкое оборудование для комплекса задач по резке, литью, штамповке и финишной обработке. Достаточно приобрести комплект из программного обеспечения для создания CAD-модели и сравнительно компактного 3D-принтера. Налицо экономия во всем - от аренды производственных площадей и необходимости в большом штате сотрудников до амортизации и обслуживания больших станков, конвейеров и агрегатов.

Узнайте больше о новых технологиях в России и в мире на выставке металлообработки в рамках ИННОПРОМ в июле 2019 года. Зарегистрируйтесь прямо сейчас и получите бесплатный электронный билет , действующий в течение 4-х дней мероприятия!